-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlensed.yaml
111 lines (111 loc) · 3.29 KB
/
lensed.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
theory:
theory_primordial_Pk.FeaturePrimordialPk:
python_path: "."
k_pivot: 0.05
n_samples_wavelength: 20
camb:
external_primordial_pk: True
extra_args: {
# Accuracy
lens_potential_accuracy: 5, Accuracy.IntkAccuracyBoost: 1, Accuracy.lSampleBoost: 3,
# Below: automatically added by the cosmo-generator
halofit_version: mead, bbn_predictor: PArthENoPE_880.2_standard.dat,
num_massive_neutrinos: 1, nnu: 3.046, theta_H0_range: [20, 100]}
likelihood:
# Change the dataset paths appropriately
planck_lowl:
class: likelihood_class.SimulatedLikelihood
python_path: "."
dataset_file: /path/to/data/planck_lowl_feature_nodelens.dataset
Alens_delens: 1
planck_highl:
class: likelihood_class.SimulatedLikelihood
python_path: "."
dataset_file: /path/to/data/planck_highl_feature_nodelens.dataset
Alens_delens: 1
SO_TEB:
class: likelihood_class.SimulatedLikelihood
python_path: "."
dataset_file: /path/to/data/SO_TEB_feature_nodelens.dataset
Alens_delens: 1
SO_EB_highl:
class: likelihood_class.SimulatedLikelihood
python_path: "."
dataset_file: /path/to/data/SO_EB_highl_feature_nodelens.dataset
Alens_delens: 1
params:
logamplitude:
prior: {min: -2, max: -0.6}
ref: {dist: norm, loc: -1.1, scale: 0.05}
proposal: 0.2
latex: \log_{10}A_\mathrm{feature}
amplitude:
value: 'lambda logamplitude: 10**logamplitude'
latex: A_\mathrm{feature}
logwavelength:
prior: {min: -2.5, max: -1.8}
ref: {dist: norm, loc: -2.1, scale: 0.001}
proposal: 0.0005
latex: \log_{10}l_\mathrm{feature}
wavelength:
value: 'lambda logwavelength: 10**logwavelength'
latex: l_\mathrm{feature}
logcentre:
prior: {min: -1.15, max: -0.3}
ref: {dist: norm, loc: -0.7, scale: 0.008}
proposal: 0.1
latex: \log_{10}k_{c,\mathrm{feature}}
centre:
value: 'lambda logcentre: 10**logcentre'
latex: k_{c,\mathrm{feature}}
logwidth:
prior: {min: 1e-3, max: 3}
ref: {dist: norm, loc: 0.1, scale: 0.02}
proposal: 0.05
latex: w_\mathrm{feature}
# Baseline cosmological parameters
As:
value: 'lambda logA: 1e-10*np.exp(logA)'
latex: A_\mathrm{s}
logA:
prior: {min: 1.61, max: 3.91}
ref: {dist: norm, loc: 3.05, scale: 0.001}
proposal: 0.0005
latex: \log(10^{10} A_\mathrm{s})
ns:
prior: {min: 0.8, max: 1.2}
ref: {dist: norm, loc: 0.965, scale: 0.004}
proposal: 0.001
latex: n_\mathrm{s}
H0:
prior: {min: 20, max: 100}
ref: {dist: norm, loc: 67.2, scale: 0.1}
proposal: 0.1
latex: H_0
ombh2:
prior: {min: 0.005, max: 0.1}
ref: {dist: norm, loc: 0.0224, scale: 0.00005}
proposal: 0.00001
latex: \Omega_\mathrm{b} h^2
omch2:
prior: {min: 0.001, max: 0.99}
ref: {dist: norm, loc: 0.12, scale: 0.0005}
proposal: 0.0001
latex: \Omega_\mathrm{c} h^2
mnu: 0.06
tau:
prior: {min: 0.01, max: 0.8}
ref: {dist: norm, loc: 0.055, scale: 0.001}
proposal: 0.0005
latex: \tau_\mathrm{reio}
prior:
high_k: >
lambda logamplitude, logcentre, logwidth:
import_module('theory_primordial_Pk').logprior_high_k(10**logamplitude, 10**logcentre, logwidth)
sampler:
mcmc:
covmat: baseline.covmat
oversample_power: 0.4
proposal_scale: 1.9
timing: True
output: chains/lensed