Skip to content

A tutorial that explains how to setup and handle software rendering for X11, WinAPI and Cocoa.

Notifications You must be signed in to change notification settings

ColleagueRiley/Software-Rendering

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 

Repository files navigation

RGFW Under the Hood: Software Rendering

Introduction

RGFW is a lightweight single-header windowing library, its source code can be found here. This tutorial is based on its source code.

The basic idea of software rendering is simple. It comes down to drawing to a buffer and blitting it to the screen. However, software rendering is more complicated when working with low-level APIs because you must properly initialize a rendering context, telling the API how to expect the data. Then to draw you have to use the API's functions to blit to the screen, which can be complicated.

This tutorial explains how RGFW handles software rendering so you can understand how to implement it yourself.

NOTE: MacOS code will be written with a Cocoa C Wrapper in mind (see the RGFW.h or Silicon.h)

Overview

A quick overview of the steps required

  1. Initialize buffer and rendering context
  2. Draw to the buffer
  3. Blit buffer to the screen
  4. Free leftover data

Step 1 (Initialize buffer and rendering context)

NOTE: You may want the buffer's size to be bigger than the window so you can scale the buffer's size without reallocating it.

On X11 you start by creating a Visual (or pixel format) that tells the window how to handle the draw data. Then create a bitmap for the buffer to render with, RGFW uses an XImage structure for the bitmap. Next, you create a Graphics Context (GC) using the display and window data. The GC is used to tell X11 how to give the window its draw data.

This is also where you can allocate the buffer. The buffer must be allocated for each platform except for Windows.

For this you need to use, XMatchVisualInfo, XCreateImage, and XCreateGC

XVisualInfo vi;
vi.visual = DefaultVisual(display, DefaultScreen(display));
		
XMatchVisualInfo(display, DefaultScreen(display), 32, TrueColor, &vi);

XImage* bitmap = XCreateImage(
			display, XDefaultVisual(display, vi.screen),
			vi.depth,
			ZPixmap, 0, NULL, RGFW_bufferSize.w, RGFW_bufferSize.h,
		    	32, 0
);

/* ..... */
/* Now this visual can be used to create a window and colormap */

XSetWindowAttributes swa;
Colormap cmap;

swa.colormap = cmap = XCreateColormap((Display*) display, DefaultRootWindow(display), vi.visual, AllocNone);

swa.background_pixmap = None;
swa.border_pixel = 0;
swa.event_mask = event_mask;

swa.background_pixel = 0;

Window window = XCreateWindow((Display*) display, DefaultRootWindow((Display*) display), x, y, w, h,
				0, vi.depth, InputOutput, vi.visual,
				CWColormap | CWBorderPixel | CWBackPixel | CWEventMask, &swa);
/* .... */

GC gc = XCreateGC(display, window, 0, NULL);

u8* buffer = (u8*)malloc(RGFW_bufferSize.w * RGFW_bufferSize.h * 4);

On Windows, you'll start by creating a bitmap header, which is used to create a bitmap with a specified format. The format structure is used to tell the Windows API how to render the buffer to the screen.

Next, you create a Drawing Context Handle (HDC) allocated in memory, this is used for selecting the bitmap later.

NOTE: Windows does not need to allocate a buffer because Winapi handles that memory for us. You can also allocate the memory by hand.

Relevant Documentation: BITMAPV5HEADER, CreateDIBSection and CreateCompatibleDC

BITMAPV5HEADER bi;
ZeroMemory(&bi, sizeof(bi));
bi.bV5Size = sizeof(bi);
bi.bV5Width = RGFW_bufferSize.w;
bi.bV5Height = -((LONG) RGFW_bufferSize.h);
bi.bV5Planes = 1;
bi.bV5BitCount = 32;
bi.bV5Compression = BI_BITFIELDS;

// where it can expect to find the RGBA data
// (note: this might need to be changed according to the endianness) 
bi.bV5BlueMask = 0x00ff0000;
bi.bV5GreenMask = 0x0000ff00;
bi.bV5RedMask = 0x000000ff;
bi.bV5AlphaMask = 0xff000000;

u8* buffer;

HBITMAP bitmap = CreateDIBSection(hdc,
	(BITMAPINFO*) &bi,
	DIB_RGB_COLORS,
	(void**) &buffer,
	NULL,
	(DWORD) 0);

HDC hdcMem = CreateCompatibleDC(hdc);

On MacOS, there is not much setup, most of the work is done during rendering.

You only need to allocate the buffer data.

u8* buffer = malloc(RGFW_bufferSize.w * RGFW_bufferSize.h * 4);

Step 2 (Draw to the buffer)

For this tutorial, I will use Silk.h for drawing to the buffer. Silk.h is a single-header software rendering graphics library.

First, include silk,

#define SILK_PIXELBUFFER_WIDTH w
#define SILK_PIXELBUFFER_HEIGHT h
#define SILK_IMPLEMENTATION
#include "silk.h"

Now you can render using silk.

silkClearPixelBufferColor((pixel*)buffer, 0x11AA0033);

silkDrawCircle(
            (pixel*)buffer, 
            (vec2i) { SILK_PIXELBUFFER_WIDTH, SILK_PIXELBUFFER_HEIGHT },
            SILK_PIXELBUFFER_WIDTH,
            (vec2i) { SILK_PIXELBUFFER_CENTER_X, SILK_PIXELBUFFER_CENTER_Y - 60}, 
            60,
            0xff0000ff
);

Step 3 (Blit the buffer to the screen)

On X11, you first set the bitmap data to the buffer. The bitmap data will be rendered using BGR, so you must
convert the data if you want to use RGB. Then you'll have to use XPutImage to draw the XImage to the window using the GC.

Relevant documentation: XPutImage

bitmap->data = (char*) buffer;
#ifndef RGFW_X11_DONT_CONVERT_BGR
	u32 x, y;
	for (y = 0; y < (u32)window_height; y++) {
		for (x = 0; x < (u32)window_width; x++) {
			u32 index = (y * 4 * area.w) + x * 4;

			u8 red = bitmap->data[index];
			bitmap->data[index] = buffer[index + 2];
			bitmap->data[index + 2] = red;
		}
    }
#endif	
XPutImage(display, (Window)window, gc, bitmap, 0, 0, 0, 0, RGFW_bufferSize.w, RGFW_bufferSize.h);

On Windows, you must first select the bitmap and make sure that you save the last selected object so you can reselect it later. Now you can blit the bitmap to the screen and reselect the old bitmap.

Relevant documentation: SelectObject and BitBlt

HGDIOBJ oldbmp = SelectObject(hdcMem, bitmap);
BitBlt(hdc, 0, 0, window_width, window_height, hdcMem, 0, 0, SRCCOPY);
SelectObject(hdcMem, oldbmp);

On MacOS, set the view's CALayer according to your window, this is used for rendering the image to the screen. Next, create the image (bitmap) using the buffer. Finally, you can add the image to the layer's graphics context, and draw and flush the layer to the screen.

Relevant documentation: CGColorSpaceCreateDeviceRGB, CGBitmapContextCreate, CGBitmapContextCreateImage, CGColorSpaceRelease, CGContextRelease, CALayer, NSGraphicsContext, CGContextDrawImage, flushGraphics and, CGImageRelease

CGImageRef createImageFromBytes(unsigned char *buffer, int width, int height) {
	// Define color space
	CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
	// Create bitmap context
	CGContextRef context = CGBitmapContextCreate(
			buffer, 
			width, height,
			8,
			RGFW_bufferSize.w * 4, 
			colorSpace,
			kCGImageAlphaPremultipliedLast);
	
	// Create image from bitmap context
	CGImageRef image = CGBitmapContextCreateImage(context);
	// Release the color space and context
	CGColorSpaceRelease(colorSpace);
	CGContextRelease(context);
			 
	return image;
}

...
void* view = NSWindow_contentView(window);
void* layer = objc_msgSend_id(view, sel_registerName("layer"));

((void(*)(id, SEL, NSRect))objc_msgSend)(layer,
				sel_registerName("setFrame:"),
				(NSRect){{0, 0}, {window_width, window_height}});

CGImageRef image = createImageFromBytes(buffer, window_width, window_height);

// Get the current graphics context
id graphicsContext = objc_msgSend_class(objc_getClass("NSGraphicsContext"), sel_registerName("currentContext"));

// Get the CGContext from the current NSGraphicsContext
id cgContext = objc_msgSend_id(graphicsContext, sel_registerName("graphicsPort"));

// Draw the image in the context
NSRect bounds = (NSRect){{0,0}, {window_width, window_height}};
CGContextDrawImage((void*)cgContext, *(CGRect*)&bounds, image);

// Flush the graphics context to ensure the drawing is displayed
objc_msgSend_id(graphicsContext, sel_registerName("flushGraphics"));
            
objc_msgSend_void_id(layer, sel_registerName("setContents:"), (id)image);
objc_msgSend_id(layer, sel_registerName("setNeedsDisplay"));
            
CGImageRelease(image);

Step 4 (Free leftover data)

When you're done rendering, you should free the bitmap and image data using the respective API functions.

On X11 and MacOS, you also should free the buffer.

On X11 you must use XDestoryImage and XFreeGC.

XDestroyImage(bitmap);
XFreeGC(display, gc);
free(buffer);

On Windows, you must use DeleteDC and DeleteObject.

DeleteDC(hdcMem);
DeleteObject(bitmap);

On MacOS you must use release.

release(bitmap);
release(image);
free(buffer);

full examples

X11

// This can be compiled with 
// gcc x11.c -lX11 -lm

#include <X11/Xlib.h>
#include <X11/Xutil.h>

#include <stdio.h>
#include <stdlib.h>


#define SILK_PIXELBUFFER_WIDTH 500
#define SILK_PIXELBUFFER_HEIGHT 500
#define SILK_IMPLEMENTATION
#include "silk.h"

int main() {
	Display* display = XOpenDisplay(NULL);
	XVisualInfo vi;
	vi.visual = DefaultVisual(display, DefaultScreen(display));
		
	XMatchVisualInfo(display, DefaultScreen(display), 32, TrueColor, &vi);

	XImage* bitmap = XCreateImage(
			display, XDefaultVisual(display, vi.screen),
			vi.depth,
			ZPixmap, 0, NULL, 500, 500,
		    32, 0
	);

	/* ..... */
	/* Now this visual can be used to create a window and colormap */
	
	XSetWindowAttributes swa;
	Colormap cmap;

	swa.colormap = cmap = XCreateColormap((Display*) display, DefaultRootWindow(display), vi.visual, AllocNone);

	swa.background_pixmap = None;
	swa.border_pixel = 0;
	swa.event_mask = CWColormap | CWBorderPixel | CWBackPixel | CWEventMask;

	swa.background_pixel = 0;

	Window window = XCreateWindow((Display*) display, DefaultRootWindow((Display*) display), 500, 500, 500, 500,
					0, vi.depth, InputOutput, vi.visual,
					CWColormap | CWBorderPixel | CWBackPixel | CWEventMask, &swa);
	/* .... */

	GC gc = XCreateGC(display, window, 0, NULL);

	u8* buffer = (u8*)malloc(500 * 500 * 4);

	XSelectInput(display, window, ExposureMask | KeyPressMask);
	XMapWindow(display, window);

	XEvent event;
	for (;;) {
		XNextEvent(display, &event);
		
		silkClearPixelBufferColor((pixel*)buffer, 0x11AA0033);

		silkDrawCircle(
				(pixel*)buffer, 
				(vec2i) { SILK_PIXELBUFFER_WIDTH, SILK_PIXELBUFFER_HEIGHT },
				SILK_PIXELBUFFER_WIDTH,
				(vec2i) { SILK_PIXELBUFFER_CENTER_X, SILK_PIXELBUFFER_CENTER_Y - 60}, 
				60,
				0xff0000ff
		);

		bitmap->data = (char*) buffer;
		#ifndef RGFW_X11_DONT_CONVERT_BGR
			u32 x, y;
			for (y = 0; y < (u32)500; y++) {
				for (x = 0; x < (u32)500; x++) {
					u32 index = (y * 4 * 500) + x * 4;
		
					u8 red = bitmap->data[index];
					bitmap->data[index] = buffer[index + 2];
					bitmap->data[index + 2] = red;
				}
			}
		#endif	
		XPutImage(display, (Window) window, gc, bitmap, 0, 0, 0, 0, 500, 500);
	}

	XDestroyImage(bitmap);
	XFreeGC(display, gc);
	free(buffer);
}

windows

// This can be compiled with
// gcc win32.c -lgdi32 -lm

#include <windows.h>

#include <stdio.h>
#include <stdint.h>
#include <assert.h>

#define SILK_PIXELBUFFER_WIDTH 500
#define SILK_PIXELBUFFER_HEIGHT 500
#define SILK_IMPLEMENTATION
#include "silk.h"

int main() {
	WNDCLASS wc = {0};
	wc.lpfnWndProc   = DefWindowProc; // Default window procedure
	wc.hInstance     = GetModuleHandle(NULL);
	wc.lpszClassName = "SampleWindowClass";
	
	RegisterClass(&wc);
	
	HWND hwnd = CreateWindowA(wc.lpszClassName, "Sample Window", 0,
			500, 500, 500, 500,
			NULL, NULL, wc.hInstance, NULL);


	BITMAPV5HEADER bi = { 0 };
	ZeroMemory(&bi, sizeof(bi));
	bi.bV5Size = sizeof(bi);
	bi.bV5Width = 500;
	bi.bV5Height = -((LONG) 500);
	bi.bV5Planes = 1;
	bi.bV5BitCount = 32;
	bi.bV5Compression = BI_BITFIELDS;

    	// where it can expect to find the RGB data
	// (note: this might need to be changed according to the endianness) 
	bi.bV5BlueMask = 0x00ff0000;
	bi.bV5GreenMask = 0x0000ff00;
	bi.bV5RedMask = 0x000000ff;
	bi.bV5AlphaMask = 0xff000000;
	
	u8* buffer;
	
	HDC hdc = GetDC(hwnd); 
	HBITMAP bitmap = CreateDIBSection(hdc,
		(BITMAPINFO*) &bi,
		DIB_RGB_COLORS,
		(void**) &buffer,
		NULL,
		(DWORD) 0);
	
	HDC hdcMem = CreateCompatibleDC(hdc);	
	
	ShowWindow(hwnd, SW_SHOW);
	UpdateWindow(hwnd);
	
	MSG msg;
	
	BOOL running = TRUE;
	
	while (running) {
		if (PeekMessageA(&msg, hwnd, 0u, 0u, PM_REMOVE)) {
			TranslateMessage(&msg);
			DispatchMessage(&msg);
		}
		
		running = IsWindow(hwnd);
		
		silkClearPixelBufferColor((pixel*)buffer, 0x11AA0033);
		
		silkDrawCircle(
			(pixel*)buffer, 
			(vec2i) { SILK_PIXELBUFFER_WIDTH, SILK_PIXELBUFFER_HEIGHT },
			SILK_PIXELBUFFER_WIDTH,
			(vec2i) { SILK_PIXELBUFFER_CENTER_X, SILK_PIXELBUFFER_CENTER_Y - 60}, 
			60,
			0xff0000ff
		);
		
		HGDIOBJ oldbmp = SelectObject(hdcMem, bitmap);
		BitBlt(hdc, 0, 0, 500, 500, hdcMem, 0, 0, SRCCOPY);
		SelectObject(hdcMem, oldbmp);
	}
	
	DeleteDC(hdcMem);
	DeleteObject(bitmap);
	return 0;
}

About

A tutorial that explains how to setup and handle software rendering for X11, WinAPI and Cocoa.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages