-
Notifications
You must be signed in to change notification settings - Fork 1
/
DESCRIPTION
executable file
·47 lines (47 loc) · 1.84 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Package: surveil
Title: Time Series Models for Disease Surveillance
Version: 0.3.0
Date: 2024-07-07
Authors@R:
person(given = "Connor",
family = "Donegan",
role = c("aut", "cre"),
email = "connor.donegan@gmail.com",
comment = c(ORCID = "0000-0002-9698-5443"))
URL: https://connordonegan.github.io/surveil/, https://github.com/ConnorDonegan/surveil/
Description: Fits time trend models for routine disease surveillance tasks and returns probability distributions for a variety of quantities of interest, including age-standardized rates, period and cumulative percent change, and measures of health inequality. The models are appropriate for count data such as disease incidence and mortality data, employing a Poisson or binomial likelihood and the first-difference (random-walk) prior for unknown risk. Optionally add a covariance matrix for multiple, correlated time series models. Inference is completed using Markov chain Monte Carlo via the Stan modeling language. References: Donegan, Hughes, and Lee (2022) <doi:10.2196/34589>; Stan Development Team (2021) <https://mc-stan.org>; Theil (1972, ISBN:0-444-10378-3).
License: GPL (>= 3)
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.1
Biarch: true
Depends:
R (>= 3.5.0)
Imports:
rstantools (>= 2.1.1),
methods,
Rcpp (>= 0.12.0),
RcppParallel (>= 5.0.1),
rstan (>= 2.26.0),
tidybayes (>= 3.0.0),
dplyr (>= 1.0.7),
rlang (>= 0.4.0),
tidyr (>= 1.1.0),
ggplot2 (>= 3.0.0),
gridExtra (>= 2.0),
scales (>= 0.4.0),
ggdist (>= 3.0.0)
LinkingTo:
BH (>= 1.66.0),
Rcpp (>= 0.12.0),
RcppEigen (>= 0.3.3.3.0),
RcppParallel (>= 5.0.1),
rstan (>= 2.26.0),
StanHeaders (>= 2.26.0)
Suggests:
rmarkdown,
knitr,
testthat
SystemRequirements: GNU make
VignetteBuilder: knitr