-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLeNet.py
51 lines (43 loc) · 2.51 KB
/
LeNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from keras.utils.np_utils import to_categorical # convert to one-hot-encoding
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau
def LeNet():
model = Sequential()
model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same',activation ='relu', input_shape = (28,28,1)))
#model.add(MaxPool2D(pool_size=(2,2)))
model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same', activation ='relu'))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',activation ='relu'))
#model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax"))
return model
def generator():
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180)
zoom_range = 0.1, # Randomly zoom image
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=False, # randomly flip images
vertical_flip=False) # randomly flip images
return datagen
def train(X_train,Y_train,X_val,Y_val,model,datagen):
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',patience=3,verbose=1,factor=0.5,min_lr=0.00001)
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=128),epochs = 50, validation_data = (X_val,Y_val),
verbose = 1, steps_per_epoch=X_train.shape[0]
, callbacks=[learning_rate_reduction])
return history