forked from purdue-tlt/latex2sympy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
asciimath_printer.py
50 lines (37 loc) · 1.66 KB
/
asciimath_printer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from sympy.printing.str import StrPrinter
from sympy.core import S
class AsciiMathPrinter(StrPrinter):
def _print_Limit(self, expr):
e, z = expr.args
return "lim_(%s -> %s) %s" % (self._print(z), self._print(z), self._print(e))
def _print_Integral(self, expr):
e, lims = expr.args
if len(lims) > 1:
return "int_(%s)^(%s) %s d%s" % (self._print(lims[1]), self._print(lims[2]), self._print(e), self._print(lims[0]))
else:
return "int %s d%s" % (self._print(e), self._print(lims))
def _print_Sum(self, expr):
e, lims = expr.args
return "sum_(%s = %s)^(%s) %s" % (self._print(lims[0]), self._print(lims[1]), self._print(lims[2]), self._print(e))
def _print_Product(self, expr):
e, lims = expr.args
return "prod_(%s = %s)^(%s) %s" % (self._print(lims[0]), self._print(lims[1]), self._print(lims[2]), self._print(e))
def _print_factorial(self, expr):
return "%s!" % self._print(expr.args[0])
def _print_Derivative(self, expr):
e = expr.args[0]
wrt = expr.args[1]
return "d/d%s %s" % (self._print(wrt), self._print(e))
def _print_Abs(self, expr):
return "|%s|" % self._print(expr.args[0])
def _print_Equality(self, expr):
return "%s = %s" % (self._print(expr.args[0]), self._print(expr.args[1]))
def _print_Pow(self, expr):
b = self._print(expr.base)
if expr.exp is S.Half:
return "sqrt(%s)" % b
if -expr.exp is S.Half:
return "1/sqrt(%s)" % b
if expr.exp is -S.One:
return "1/%s" % b
return "%s^(%s)" % (b, self._print(expr.exp))