You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
File c:\users\convlab-3\convlab\dialog_agent\session.py:122, in BiSession.next_turn(self, last_observation)
100 def next_turn(self, last_observation):
101 """Conduct a new turn of dialog, which consists of the system response and user response.
102
103 The variable type of responses can be either 1) str or 2) dialog act, depends on the dialog mode settings of the
(...)
120 The reward given by the user.
121 """
--> 122 user_response = self.next_response(last_observation)
123 if self.evaluator:
124 self.evaluator.add_sys_da(self.user_agent.get_in_da_eval(), self.sys_agent.dst.state['belief_state'])
Hi everyone. I really need help to solve this error. I have spent a lot of time on this error, and I can not solve the project without solving the error, so if anyone knows how solve it, kindly provide the answer.
Hi, I am facing the following error, while trying to simulate and generate dialogues between the user and the system:
To replicate the error, here is the code that I am using:
user_nlu = BERTNLU()
user_dst = RuleDST()
user_policy = RulePolicy(character='usr')
user_nlg = TemplateNLG(is_user=True)
user_agent = PipelineAgent(user_nlu, user_dst, user_policy, user_nlg, name='user')
sys_nlu = BERTNLU()
sys_nlg = TemplateNLG(is_user=False)
sys_dst = RuleDST()
policy_sys = PPO(is_train=True, seed=conf['model']['seed'],
vectorizer=conf['vectorizer_sys_activated'])
sys_policy = PPO(is_train=True, seed=0, dataset_name='multiwoz21')
sys_agent = PipelineAgent(sys_nlu, sys_dst, policy_sys, sys_nlg, name="sys")
evaluator = MultiWozEvaluator()
session = BiSession(sys_agent, user_agent, kb_query=None, evaluator=evaluator)
simulator = PipelineAgent(user_nlu, user_dst, user_policy, user_nlg, name='user')
env = Environment(sys_nlg, simulator, sys_nlu, sys_dst, evaluator=evaluator)
def set_seed(r_seed):
random.seed(r_seed)
np.random.seed(r_seed)
torch.manual_seed(r_seed)
set_seed(20200131)
num_dialogues = 30
dialog_data = []
sys_response = ''
success_threshold = 0
success_labels = []
for i in range(num_dialogues):
session.init_session()
dialog = []
session_over = False
cumulative_reward = 0
print(f"Turn round {i}")
print()
while not session_over:
response = session.next_turn(sys_response)
system_response, user_response, session_over, reward = response
dialog.append((system_response, user_response))
cumulative_reward += reward
print(f"User: {user_response}")
print(f"System: {system_response}")
print(f" Reward: {reward}")
print()
success_label = determine_success(cumulative_reward, success_threshold)
dialog_data.append((dialog, success_label))
success = session.evaluator.task_success()
success_labels.append(success)
Here is the full error that I am getting after running executing the code:
ValueError Traceback (most recent call last)
Cell In[24], line 13
11 print()
12 while not session_over:
---> 13 response = session.next_turn(sys_response)
14 system_response, user_response, session_over, reward = response
15 dialog.append((system_response, user_response))
File c:\users\convlab-3\convlab\dialog_agent\session.py:122, in BiSession.next_turn(self, last_observation)
100 def next_turn(self, last_observation):
101 """Conduct a new turn of dialog, which consists of the system response and user response.
102
103 The variable type of responses can be either 1) str or 2) dialog act, depends on the dialog mode settings of the
(...)
120 The reward given by the user.
121 """
--> 122 user_response = self.next_response(last_observation)
123 if self.evaluator:
124 self.evaluator.add_sys_da(self.user_agent.get_in_da_eval(), self.sys_agent.dst.state['belief_state'])
File c:\users\convlab-3\convlab\dialog_agent\session.py:96, in BiSession.next_response(self, observation)
94 def next_response(self, observation):
95 next_agent = self.next_agent()
---> 96 response = next_agent.response(observation)
...
29 new_acts['categorical'].append(
30 {"intent": intent, "domain": domain, "slot": slot, "value": value})
31 return new_acts
ValueError: too many values to unpack (expected 4)
The text was updated successfully, but these errors were encountered: