-
Notifications
You must be signed in to change notification settings - Fork 0
/
SpaceX_Dashboarding.py
122 lines (112 loc) · 6.34 KB
/
SpaceX_Dashboarding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Import required libraries
import pandas as pd
import dash
import dash_html_components as html
import dash_core_components as dcc
from dash.dependencies import Input, Output
import plotly.express as px
# Read the airline data into pandas dataframe
spacex_df = pd.read_csv("spacex_launch_dash.csv")
max_payload = spacex_df['Payload Mass (kg)'].max()
min_payload = spacex_df['Payload Mass (kg)'].min()
def site_filter(dataframe, site_name):
return dataframe[dataframe['Launch Site'] == site_name]
# Create a dash application
app = dash.Dash(__name__)
# Create an app layout
app.layout = html.Div(children=[html.H1('SpaceX Launch Records Dashboard',
style={'textAlign': 'center', 'color': '#503D36',
'font-size': 40}),
# TASK 1: Add a dropdown list to enable Launch Site selection
# The default select value is for ALL sites
dcc.Dropdown(
id='site-dropdown',
options=[
{'label': 'All Sites', 'value': 'allsite'},
{'label': 'CCAFS LC-40', 'value': 'site1'},
{'label': 'VAFB SLC-4E', 'value': 'site2'},
{'label': 'KSC LC-39A', 'value': 'site3'},
{'label': 'CCAFS SLC-40', 'value': 'site4'}
],
value= 'allsite',
placeholder= 'Select a Launch Site here',
searchable= True
),
html.Br(),
# TASK 2: Add a pie chart to show the total successful launches count for all sites
# If a specific launch site was selected, show the Success vs. Failed counts for the site
html.Div(dcc.Graph(id='success-pie-chart')),
html.Br(),
html.P("Payload range (Kg):"),
# TASK 3: Add a slider to select payload range
dcc.RangeSlider(id='payload-slider', min=0, max=10000, step=1000,
marks={
0: '0',
1000: '1000 Kg',
2000: '2000 Kg',
3000: '3000 Kg',
4000: '4000 Kg',
5000: '5000 Kg',
6000: '6000 Kg',
7000: '7000 Kg',
8000: '8000 Kg',
9000: '9000 Kg',
10000: '10000'
}, value=[min_payload, max_payload],
allowCross=False
),
# TASK 4: Add a scatter chart to show the correlation between payload and launch success
html.Div(dcc.Graph(id='success-payload-scatter-chart')),
])
# TASK 2:
# Add a callback function for `site-dropdown` as input, `success-pie-chart` as output
@app.callback(
Output(component_id='success-pie-chart', component_property='figure'),
Input(component_id='site-dropdown', component_property='value')
)
def get_pie_chart(entered_site):
filtered_df = spacex_df
if entered_site == 'allsite':
all_data = filtered_df[filtered_df['class']==1]
fig = px.pie(all_data, values='class',
names='Launch Site',
title='All Sites')
return fig
else:
sites = {'site1': 'CCAFS LC-40', 'site2': 'VAFB SLC-4E', 'site3': 'KSC LC-39A', 'site4': 'CCAFS SLC-40'}
site_data = site_filter(filtered_df, sites[entered_site]).groupby('class')['Launch Site'].count().to_frame('Launch')
fig = px.pie(site_data, values='Launch',
names=site_data.index.values,
title=f'{sites[entered_site]} - Success V/s Failed Launch',
hover_name=['Success', 'Failed'])
return fig
# TASK 4:
# Add a callback function for `site-dropdown` and `payload-slider` as inputs, `success-payload-scatter-chart` as output
@app.callback(
Output(component_id='success-payload-scatter-chart', component_property='figure'),
[
Input(component_id='site-dropdown', component_property='value'),
Input(component_id="payload-slider", component_property="value")
]
)
def get_scatter_plot(entered_site, payload_size):
if entered_site == 'allsite':
data = spacex_df[['Payload Mass (kg)', 'class', 'Booster Version Category']]
data = data[(data['Payload Mass (kg)'] > payload_size[0]) & (data['Payload Mass (kg)'] < payload_size[1])]
scatter_fig = px.scatter(data,
x='Payload Mass (kg)', y='class',
color='Booster Version Category',
title='Correlation between Payload and Success for all sites')
return scatter_fig
else:
sites = {'site1': 'CCAFS LC-40', 'site2': 'VAFB SLC-4E', 'site3': 'KSC LC-39A', 'site4': 'CCAFS SLC-40'}
site_data = site_filter(spacex_df, sites[entered_site])[['Payload Mass (kg)', 'class', 'Booster Version Category']]
site_data = site_data[(site_data['Payload Mass (kg)'] > payload_size[0]) & (site_data['Payload Mass (kg)'] < payload_size[1])]
scatter_fig = px.scatter(site_data,
x='Payload Mass (kg)', y='class',
color='Booster Version Category',
title=f'Correlation between Payload and Success for {sites[entered_site]}')
return scatter_fig
# Run the app
if __name__ == '__main__':
app.run_server()