forked from yantsant/tensor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
93 lines (87 loc) · 3.36 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#pragma once
#include <iostream>
#include <fstream>
#include <string>
#include <filesystem>
#include "tensor/test/expect.h"
#include "tensor/test/test.h"
#include "tensor/object.h"
#include "tensor/quat.h"
#include "./state-measure/schema.h"
#include "./state-measure/state.h"
#include "./state-measure/measure.h"
#include "./state-measure/scalar.h"
#include "./state-measure/strain.h"
#include "./state-measure/stress.h"
#include "./models/factory.h"
const size_t DIM = 3;
std::random_device rd; // Will be used to obtain a seed for the random number engine
std::mt19937 gen(rd()); // Standard mersenne_twister_engine seeded with rd()
extern std::uniform_real_distribution<double> unidistr = std::uniform_real_distribution<double>((double)0, (double)1);
measure::type_schema measure::DEFAULT_NUMERICAL_SCHEMA = measure::type_schema::RATE_CALCULATE;
int main()
{
#ifdef _DEBUG
std::cout << " ------------------------------ Running in DEBUG mode --------------------------- \n";
#endif
const auto gl = GLOBAL_BASIS<double, 3>;
//try
{
using namespace measure;
std::unordered_map<int, void*> map;
map.insert({ 1, new int[10] });
map.insert({ 2, new float[10] });
map.insert({ 3, new double[10] });
map.insert({ 4, new std::string[10] });
map.insert({ 5, new std::array<double, 10>() });
const auto type = typeid(std::array<double, 10>).name();
auto xmap = static_cast<std::array<double, 10>*>(map[5]);
using namespace tens;
const auto qwew = container<double, 30, 1>(0.0);
//func(qwew, sqrt);
// run_test();
//const auto yy = container<double>(30, 2, std::move(std::unique_ptr<double>(arr)));
//const auto xx = container<double>(30, 0);
//auto scalar = container<double>(1, 1, 0.4534535);
//auto scalar_array = container<double>(10, 2, 0.4534535);
//auto scalar_array1 = object<double>(10, 0, FILL_TYPE::RANDOM);
//auto scalar_array2 = object<double>(10, 0, FILL_TYPE::RANDOM);
//scalar_array2 += scalar_array1;
//const auto scal(scalar_array2);
//double value = scalar;
auto object = create_basis<double, 3>();
const auto b1 = create_basis<double, 3>(DEFAULT_ORTH_BASIS::RANDOM);
const auto b2 = create_basis<double, 3>(DEFAULT_ORTH_BASIS::RANDOM);
const auto m1 = Matrix<double, 3>(FILL_TYPE::RANDOM);
const auto m2 = Matrix<double, 3>(FILL_TYPE::RANDOM);
auto v6 = Vector<double, 3>(std::array<double, 3>{1, 0, 0}, object);
auto a3 = std::array<double, 3>{1, 0, 0};
auto v1 = Vector<double, 3>(a3, b1);
auto v2 = Vector<double, 3>(a3, b1);
auto v3 = v1;
auto v5 = std::move(v1);
auto v4 = Vector<double, 3>(a3, b2);
auto t1 = T3x3<double>(m1, b2);
auto t2 = Tensor<double, 3>(m2, b2);
auto t3 = Tensor<double, 3>(m1, b1);
// t2 = t1 / 1e-18;
auto res = m1 * m1;
auto vres = v4 + v3;
v1 = v4 - v3;
v1 = v4 + v3;
auto vres1 = v1 * v3;
auto tvres2 = v4 * t1;
t1 = t2 * t2;
t1 = t2 * 2.0;
std::string file_path = "../models/param/plasticity.json";
//auto model = model::ModelFactory<model::Elasticity>::create<strain::GradDeform, stress::CaushyStress>(file_path, measure::type_schema::RATE_CALCULATE);
auto model = model::ModelFactory<model::Plasticity>::create<strain::GradDeform, stress::CaushyStress>(file_path, measure::type_schema::FINITE_CALCULATE);
std::cout << *model;
for (size_t i = 0; i < 10000; i++) {
model->step(1e-6);
}
std::cout << "Result of hyperelasic model \n";
std::cout << *model;
}
return 0;
}