-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathevolution.py
144 lines (108 loc) · 5.72 KB
/
evolution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
import numpy as np
#######################################################################
#
# Utility functions for evaluations (raw)
#
#######################################################################
def sort_and_rank(score, target):
_, indices = torch.sort(score, dim=1, descending=True)
indices = torch.nonzero(indices == target.view(-1, 1))
indices = indices[:, 1].view(-1)
return indices
# return MRR (raw), and Hits @ (1, 3, 10)
def calc_raw_mrr(score, labels, hits=[]):
with torch.no_grad():
ranks = sort_and_rank(score, labels)
ranks += 1 # change to 1-indexed
mrr = torch.mean(1.0 / ranks.float())
hits1 = torch.mean((ranks <= hits[0]).float())
hits3 = torch.mean((ranks <= hits[1]).float())
hits10 = torch.mean((ranks <= hits[2]).float())
return mrr.item(), hits1.item(), hits3.item(), hits10.item()
#######################################################################
#
# Utility functions for evaluations (filtered)
#
#######################################################################
def filter_h(triplets_to_filter, target_h, target_r, target_t, num_entities):
target_h, target_r, target_t = int(target_h), int(target_r), int(target_t)
filtered_h = []
# Do not filter out the test triplet, since we want to predict on it
if (target_h, target_r, target_t) in triplets_to_filter:
triplets_to_filter.remove((target_h, target_r, target_t))
# Do not consider an object if it is part of a triplet to filter
for h in range(num_entities):
if (h, target_r, target_t) not in triplets_to_filter:
filtered_h.append(h)
return torch.LongTensor(filtered_h)
def filter_t(triplets_to_filter, target_h, target_r, target_t, num_entities):
target_h, target_r, target_t = int(target_h), int(target_r), int(target_t)
filtered_t = []
# Do not filter out the test triplet, since we want to predict on it
if (target_h, target_r, target_t) in triplets_to_filter:
triplets_to_filter.remove((target_h, target_r, target_t))
# Do not consider an object if it is part of a triplet to filter
for t in range(num_entities):
if (target_h, target_r, t) not in triplets_to_filter:
filtered_t.append(t)
return torch.LongTensor(filtered_t)
def get_filtered_rank(num_entity, score, h, r, t, test_size, triplets_to_filter, entity):
""" Perturb object in the triplets
"""
num_entities = num_entity
ranks = []
for idx in range(test_size):
target_h = h[idx]
target_r = r[idx]
target_t = t[idx]
# print('t',target_t)
if entity == 'object':
filtered_t = filter_t(triplets_to_filter, target_h, target_r, target_t, num_entities)
target_t_idx = int((filtered_t == target_t).nonzero())
_, indices = torch.sort(score[idx][filtered_t], descending=True)
rank = int((indices == target_t_idx).nonzero())
if entity == 'subject':
filtered_h = filter_h(triplets_to_filter, target_h, target_r, target_t, num_entities)
target_h_idx = int((filtered_h == target_h).nonzero())
_, indices = torch.sort(score[idx][filtered_h], descending=True)
rank = int((indices == target_h_idx).nonzero())
ranks.append(rank)
return torch.LongTensor(ranks)
def calc_filtered_mrr(num_entity, score, train_triplets, valid_triplets, test_triplets, entity, hits=[]):
with torch.no_grad():
h = test_triplets[:, 0]
r = test_triplets[:, 1]
t = test_triplets[:, 2]
test_size = test_triplets.shape[0]
train_triplets = torch.Tensor([[quad[0], quad[1], quad[2]] for quad in train_triplets])
valid_triplets = torch.Tensor([[quad[0], quad[1], quad[2]] for quad in valid_triplets])
test_triplets = torch.Tensor([[quad[0], quad[1], quad[2]] for quad in test_triplets])
triplets_to_filter = torch.cat([train_triplets, valid_triplets, test_triplets]).tolist()
triplets_to_filter = {tuple(triplet) for triplet in triplets_to_filter}
ranks = get_filtered_rank(num_entity, score, h, r, t, test_size, triplets_to_filter, entity)
ranks += 1 # change to 1-indexed
mrr = torch.mean(1.0 / ranks.float())
hits1 = torch.mean((ranks <= hits[0]).float())
hits3 = torch.mean((ranks <= hits[1]).float())
hits10 = torch.mean((ranks <= hits[2]).float())
return mrr.item(), hits1.item(), hits3.item(), hits10.item()
def calc_filtered_test_mrr(num_entity, score, train_triplets, valid_triplets, valid_triplets2, test_triplets, entity, hits=[]):
with torch.no_grad():
h = test_triplets[:, 0]
r = test_triplets[:, 1]
t = test_triplets[:, 2]
test_size = test_triplets.shape[0]
train_triplets = torch.Tensor([[quad[0], quad[1], quad[2]] for quad in train_triplets])
valid_triplets = torch.Tensor([[quad[0], quad[1], quad[2]] for quad in valid_triplets])
valid_triplets2 = torch.Tensor([[quad[0], quad[1], quad[2]] for quad in valid_triplets2])
test_triplets = torch.Tensor([[quad[0], quad[1], quad[2]] for quad in test_triplets])
triplets_to_filter = torch.cat([train_triplets, valid_triplets, valid_triplets2, test_triplets]).tolist()
triplets_to_filter = {tuple(triplet) for triplet in triplets_to_filter}
ranks = get_filtered_rank(num_entity, score, h, r, t, test_size, triplets_to_filter, entity)
ranks += 1 # change to 1-indexed
mrr = torch.mean(1.0 / ranks.float())
hits1 = torch.mean((ranks <= hits[0]).float())
hits3 = torch.mean((ranks <= hits[1]).float())
hits10 = torch.mean((ranks <= hits[2]).float())
return mrr.item(), hits1.item(), hits3.item(), hits10.item()