-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathnews-analysis.py
130 lines (96 loc) · 5.66 KB
/
news-analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from datetime import datetime, date, timedelta
import requests, json, re, os
#sentiment and webseaarch keys - you need to create yours
sentiment_key = os.getenv('sentiment_key')
websearch_key = os.getenv('websearch_key')
# user input variables
# The key can be fed to the trading terminal for a position request.
# Values are keyowrds to search the web for
crypto_key_pairs = {"BTCUSD":"Bitcoin", "ETHUSD":"Ethereum", "LTCUSD":"Litecoin", "XRPUSD":"Ripple", "BATUSD":"BATUSD, basic attention token", "DSHUSD":"Dash Coin", "EOSUSD":"EOS", "ETCUSD":"ETC", "IOTUSD":"IOTA", "NEOUSD":"NEO", "OMGUSD":"OMISE Go", "TRXUSD":"Tron", "XLMUSD":"Stellar Lumens", "XMRUSD":"Monero", "ZECUSD":"Zcash"}
#define from published date
date_since = date.today() - timedelta(days=1)
#store inputs in different lists
cryptocurrencies = []
crypto_keywords = []
#Storing keys and values in separate lists
for i in range(len(crypto_key_pairs)):
cryptocurrencies.append(list(crypto_key_pairs.keys())[i])
crypto_keywords.append(list(crypto_key_pairs.values())[i])
# Search the web for news unsing the websearch api, send a request for each crypto in cryprocurrencies
def get_news_headlines():
'''Search the web for news headlines based the keywords in the global variable'''
news_output = {}
#TO DO - looping through keywords created odd looking dicts. Gotta loop through keys instead
for crypto in crypto_keywords:
#create empty dicts in the news output
news_output["{0}".format(crypto)] = {'description': [], 'title': []}
#configure the fetch request and select date range. Increase date range by adjusting timedelta(days=1)
url = "https://contextualwebsearch-websearch-v1.p.rapidapi.com/api/search/NewsSearchAPI"
querystring = {"q":str(crypto),"pageNumber":"1","pageSize":"30","autoCorrect":"true","fromPublishedDate":date_since,"toPublishedDate":"null"}
headers = {
'x-rapidapi-key': websearch_key,
'x-rapidapi-host': "contextualwebsearch-websearch-v1.p.rapidapi.com"
}
#get the raw response
response = requests.request("GET", url, headers=headers, params=querystring)
# convert response to text format
result = json.loads(response.text)
#store each headline and description in the dicts above
for news in result['value']:
news_output[crypto]["description"].append(news['description'])
news_output[crypto]["title"].append(news['title'])
return news_output
def analyze_headlines():
'''Analyse each headline pulled trhough the API for each crypto'''
news_output = get_news_headlines()
for crypto in crypto_keywords:
#empty list to store sentiment value
news_output[crypto]['sentiment'] = {'pos': [], 'mid': [], 'neg': []}
# analyse the description sentiment for each crypto news gathered
if len(news_output[crypto]['description']) > 0:
for title in news_output[crypto]['title']:
# remove all non alphanumeric characters from payload
titles = re.sub('[^A-Za-z0-9]+', ' ', title)
import http.client
conn = http.client.HTTPSConnection('text-sentiment.p.rapidapi.com')
#format and sent the request
payload = 'text='+titles
headers = {
'content-type': 'application/x-www-form-urlencoded',
'x-rapidapi-key': sentiment_key,
'x-rapidapi-host': 'text-sentiment.p.rapidapi.com'
}
conn.request("POST", "/analyze", payload, headers)
#get the response and format it
res = conn.getresponse()
data = res.read()
title_sentiment = json.loads(data)
#assign each positive, neutral and negative count to another list in the news output dict
if not isinstance(title_sentiment, int):
if title_sentiment['pos'] == 1:
news_output[crypto]['sentiment']['pos'].append(title_sentiment['pos'])
elif title_sentiment['mid'] == 1:
news_output[crypto]['sentiment']['mid'].append(title_sentiment['mid'])
elif title_sentiment['neg'] == 1:
news_output[crypto]['sentiment']['neg'].append(title_sentiment['neg'])
else:
print(f'Sentiment not found for {crypto}')
return news_output
def calc_sentiment():
'''Use the sentiment returned in the previous function to calculate %'''
news_output = analyze_headlines()
#re-assigned the sentiment list value to a single % calc of all values in each of the 3 lists
for crypto in crypto_keywords:
#length of title list can't be 0 otherwise we'd be dividing by 0 below
if len(news_output[crypto]['title']) > 0:
news_output[crypto]['sentiment']['pos'] = len(news_output[crypto]['sentiment']['pos'])*100/len(news_output[crypto]['title'])
news_output[crypto]['sentiment']['mid'] = len(news_output[crypto]['sentiment']['mid'])*100/len(news_output[crypto]['title'])
news_output[crypto]['sentiment']['neg'] = len(news_output[crypto]['sentiment']['neg'])*100/len(news_output[crypto]['title'])
#print the output for each coin to verify the result
print(crypto, news_output[crypto]['sentiment'])
return news_output
# TO DO - If integrated with an exhange, add weight logic to avid placing a trade
# when only 1 article is found and the sentiment is positive.
#call the function
#Delete Call if adding trading logic. Assign the function to a variable instead.
calc_sentiment()