-
Notifications
You must be signed in to change notification settings - Fork 3
/
run_MADE.asv
1075 lines (910 loc) · 49.6 KB
/
run_MADE.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function run_MADE(output_dir_name, bids_dir, participant_label, ...
session_label, file_extension, ...
json_settings_file, save_interim_result)
% ************************************************************************
% The Maryland Analysis of Developmental EEG (UMADE) Pipeline
% Version 1.0
% Developed at the Child Development Lab, University of Maryland, College Park
% Original Contributors to MADE pipeline:
% Ranjan Debnath (rdebnath@umd.edu)
% George A. Buzzell (gbuzzell@umd.edu)
% Santiago Morales Pamplona (moraless@umd.edu)
% Stephanie Leach (sleach12@umd.edu)
% Maureen Elizabeth Bowers (mbowers1@umd.edu)
% Nathan A. Fox (fox@umd.edu)
% Ongoing Contributors:
% Lydia Yoder (lyoder@umd.edu)
% Erik Lee (eex6144@umn.edu)
% Martin Antunez Garcia (mantunez@umd.edu )
% Marco McSweeney (mmcsw1@umd.edu)
% MADE uses EEGLAB toolbox and some of its plugins. Before running the pipeline, you have to install the following:
% EEGLab: https://sccn.ucsd.edu/eeglab/downloadtoolbox.php/download.php
% You also need to download the following plugins/extensions from here: https://sccn.ucsd.edu/wiki/EEGLAB_Extensions
% Specifically, download:
% MFFMatlabIO: https://github.com/arnodelorme/mffmatlabio/blob/master/README.txt
% FASTER: https://sourceforge.net/projects/faster/
% ADJUST: https://www.nitrc.org/projects/adjust/
% Adjusted ADJUST (included in this pipeline): https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline
% After downloading these plugins (as zip files), you need to place it in the eeglab/plugins folder.
% For instance, for FASTER, you uncompress the downloaded extension file (e.g., 'FASTER.zip') and place it in the main EEGLAB "plugins" sub-directory/sub-folder.
% After placing all the required plugins, add the EEGLAB folder to your path by using the following code:
% addpath(genpath(('...')) % Enter the path of the EEGLAB folder in this line
% Please cite the following references for in any manuscripts produced utilizing MADE pipeline:
% EEGLAB: A Delorme & S Makeig (2004) EEGLAB: an open source toolbox for
% analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134, 9?21.
% firfilt (filter plugin): developed by Andreas Widmann (https://home.uni-leipzig.de/biocog/content/de/mitarbeiter/widmann/eeglab-plugins/)
% FASTER: Nolan, H., Whelan, R., Reilly, R.B., 2010. FASTER: Fully Automated Statistical
% Thresholding for EEG artifact Rejection. Journal of Neuroscience Methods, 192, 152?162.
% ADJUST: Mognon, A., Jovicich, J., Bruzzone, L., Buiatti, M., 2011. ADJUST: An automatic EEG
% artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48, 229?240.
% Our group has modified ADJUST plugin to improve selection of ICA components containing artifacts
% This pipeline is released under the GNU General Public License version 3.
% ************************************************************************
%% User input: user provide relevant information to be used for data processing
% Preprocessing of EEG data involves using some common parameters for
% every subject. This part of the script initializes the common parameters.
%clear % clear matlab workspace
%clc % clear matlab command window
%addpath(genpath('/home/faird/shared/data/TOTS_UMD_collab/code/cdl-eeg-processing/MADE-EEG-preprocessing-pipeline'))
%addpath(genpath('/home/faird/shared/data/TOTS_UMD_collab/code/cdl-eeg-processing/MADE-EEG-preprocessing-pipeline/eeglab2021.0'));% enter the path of the EEGLAB folder in this line
%% Read files to analyses
%datafile_names=dir(rawdata_location);
force_session_definition = 1; %Since ICA denoising happens at the session
%level, be sure either the session is defined
%or the participant has one session.
datafile_names = find_files_to_proc(bids_dir, participant_label, session_label, ...
'', file_extension, force_session_definition); %Commenting out task label because this should always be run at the session level
%datafile_names=dir([rawdata_location '/*.set']);
datafile_dirs={datafile_names.folder};
datafile_names={datafile_names.name};
[filepath,name,ext] = fileparts(char(datafile_names{1}));
%% Check whether EEGLAB and all necessary plugins are in Matlab path.
check_if_plugins_are_present(ext);
%% Loop over all data files
for run=1:length(datafile_names)
rawdata_location = datafile_dirs{run}; %update the input path for the given run
fprintf('\n\n\n*** Processing run %d (%s) ***\n\n\n', run, datafile_names{run});
sub_id(run) = string(participant_label);
%% STEP 1: Import EGI data file and relevant information
EEG = pop_loadset('filename',datafile_names{run},'filepath',rawdata_location);
temp_split = split(datafile_names{run}, '_task');
subses = temp_split{end - 1}; %Its okay that this will get updated each iteration
%since it will be the same each time.
% Edit this data import function and use appropriate plugin from EEGLAB
% for non-.mff data. For example, to import biosemi data, use biosig plugin.
% The example codes for 64 channels biosemi data:
% EEG = pop_biosig([rawdata_location, filesep, datafile_names{run}]);
% EEG = eeg_checkset(EEG);
% EEG = pop_select( EEG,'nochannel', 65:72); % delete redundant channels
%% Step 1.25: Load settings for processing
% 2. Enter the path of the folder where you want to save the processed data
s = grab_settings(datafile_names{run}, json_settings_file);
%NEW - to cover case where boundary marker changes
boundary_marker = s.boundary_marker;
%NEW - to cover case where EKG channel is present
if isfield(s, 'ekg_channels')
ekg_channels = s.ekg_channels;
else
ekg_channels = {};
end
% 3. Enter the path of the channel location file
%channel_locations = ['path to eeglab folder' filesep 'sample_locs' filesep 'GSN128.sfp'];
channel_locations = s.channel_locations;
% 5. Do you want to down sample the data?
down_sample = s.down_sample; % 0 = NO (no down sampling), 1 = YES (down sampling)
sampling_rate = s.sampling_rate; % set sampling rate (in Hz), if you want to down sample
% 6. Do you want to delete the outer layer of the channels? (Rationale has been described in MADE manuscript)
% This fnction can also be used to down sample electrodes. For example, if EEG was recorded with 128 channels but you would
% like to analyse only 64 channels, you can assign the list of channnels to be excluded in the 'outerlayer_channel' variable.
delete_outerlayer = s.delete_outerlayer; % 0 = NO (do not delete outer layer), 1 = YES (delete outerlayer);
% If you want to delete outer layer, make a list of channels to be deleted
outerlayer_channel = s.outerlayer_channel; % list of channels
% recommended list for EGI 128 chanenl net: {'E17' 'E38' 'E43' 'E44' 'E48' 'E49' 'E113' 'E114' 'E119' 'E120' 'E121' 'E125' 'E126' 'E127' 'E128' 'E56' 'E63' 'E68' 'E73' 'E81' 'E88' 'E94' 'E99' 'E107'}
% 7. Initialize the filters
highpass = s.highpass; % High-pass frequency
lowpass = s.lowpass; % Low-pass frequency. We recommend low-pass filter at/below line noise frequency (see manuscript for detail)
% 14. Do you want to rereference your data?
rerefer_data = s.rerefer_data; % 0 = NO, 1 = YES
reref=s.reref; % Enter electrode name/s or number/s to be used for rereferencing
% For channel name/s enter, reref = {'channel_name', 'channel_name'};
% For channel number/s enter, reref = [channel_number, channel_number];
% For average rereference enter, reref = []; default is average rereference
% 16. How do you want to save your data? .set or .mat
output_format = s.output_format; % 1 = .set (EEGLAB data structure), 2 = .mat (Matlab data structure)
%% Step 1.3 Create output folders to save data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%Format the output path to be the same as the input path at %%%%%%%
%%%%%the level of the run folder onwards %%%%%%%%%%%%%%%%%%%%%%%%%%
partial_path_index = strfind(rawdata_location, '/sub');
if length(partial_path_index) > 1
partial_path_index = partial_path_index(end);
end
output_location = fullfile(output_dir_name, rawdata_location(partial_path_index:end));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ischar(save_interim_result)
save_interim_result = str2double(save_interim_result);
end
if exist(output_location, 'dir') == 0
mkdir(output_location);
end
if exist([output_location filesep 'filtered_data'], 'dir') == 0
mkdir([output_location filesep 'filtered_data'])
end
if exist([output_location filesep 'ica_data'], 'dir') == 0
mkdir([output_location filesep 'ica_data'])
end
if exist([output_location filesep 'processed_data'], 'dir') == 0
mkdir([output_location filesep 'processed_data'])
end
if exist([output_location filesep 'merged_data'], 'dir') == 0
mkdir([output_location filesep 'merged_data'])
end
cd(output_location); %Go to output dir
%% Step 1.4: Save specification
save_specification(s, output_location, datafile_names{run});
%% STEP 1.5: Delete discontinuous data from the raw data file (OPTIONAL, but necessary for most EGI files)
% Note: code below may need to be modified to select the appropriate markers (depends on the import function)
% remove discontinous data at the start of the file
disconMarkers = find(strcmp({EEG.event.type}, boundary_marker)); % boundary markers often indicate discontinuity
if isempty(disconMarkers) == false
EEG = eeg_eegrej( EEG, [1 EEG.event(disconMarkers(1)).latency] ); % remove discontinuous chunk... if not EGI, MODIFY BEFORE USING THIS SECTION
EEG = eeg_checkset( EEG );
end
%% STEP 2: Import channel locations
EEG=pop_chanedit(EEG, 'load',{channel_locations 'filetype' 'autodetect'});
EEG = eeg_checkset( EEG );
% Check whether the channel locations were properly imported. The EEG signals and channel numbers should be same.
if size(EEG.data, 1) ~= length(EEG.chanlocs)
error('The size of the data does not match with channel numbers.');
end
%% STEP 2.5: Delete EKG Channels if they are present
%This chunk of code should be good but needs to be tested. Also, need
%to be sure the check for the number of electrodes in step 2 isn't
%thrown off by having the ekg channels.
if size(ekg_channels, 2) > 0
nbchans=cell(1,EEG.nbchan);
for i=1:EEG.nbchan
nbchans{i}= EEG.chanlocs(i).labels;
end
[~,chansidx] = ismember(ekg_channels, nbchans);
RemChans_Idx = chansidx(chansidx ~= 0);
EEG = eeg_checkset( EEG );
EEG = pop_select( EEG,'nochannel', RemChans_Idx);
end
%% STEP 3: Adjust anti-aliasing and task related time offset
%if adjust_time_offset==1
% adjust anti-aliasing filter time offset
%if filter_timeoffset~=0
% for aafto=1:length(EEG.event)
% EEG.event(aafto).latency=EEG.event(aafto).latency+(filter_timeoffset/1000)*EEG.srate;
% end
%end
% adjust stimulus time offset
%if stimulus_timeoffset~=0
% for sto=1:length(EEG.event)
% for sm=1:length(stimulus_markers)
% if strcmp(EEG.event(sto).type, stimulus_markers{sm})
% EEG.event(sto).latency=EEG.event(sto).latency+(stimulus_timeoffset/1000)*EEG.srate;
% end
% end
% end
%end
% adjust response time offset
%if response_timeoffset~=0
% for rto=1:length(EEG.event)
% for rm=1:length(response_markers)
% if strcmp(EEG.event(rto).type, response_markers{rm})
% EEG.event(rto).latency=EEG.event(rto).latency-(response_timeoffset/1000)*EEG.srate;
% end
% end
% end
%end
%end
%% STEP 4: Change sampling rate
if down_sample==1
if floor(sampling_rate) > EEG.srate
error ('Sampling rate cannot be higher than recorded sampling rate');
elseif floor(sampling_rate) ~= EEG.srate
EEG = pop_resample( EEG, sampling_rate);
EEG = eeg_checkset( EEG );
end
end
%% STEP 5: Delete outer layer of channels
chans_labels=cell(1,EEG.nbchan);
for i=1:EEG.nbchan
chans_labels{i}= EEG.chanlocs(i).labels;
end
[chans,chansidx] = ismember(outerlayer_channel, chans_labels);
outerlayer_channel_idx = chansidx(chansidx ~= 0);
if delete_outerlayer==1
if isempty(outerlayer_channel_idx)==1
error(['None of the outer layer channels present in channel locations of data.'...
' Make sure outer layer channels are present in channel labels of data (EEG.chanlocs.labels).']);
else
EEG = pop_select( EEG,'nochannel', outerlayer_channel_idx);
EEG = eeg_checkset( EEG );
end
end
%% STEP 5.25: Label Task Variable and DIN conidtions if it is not already labeled
if strcmp(EEG.event(3).Task, 'n/a')
if contains(EEG.filename, 'MMN')
task = 'MMN';
din2s = find(strcmp({EEG.event.type}, 'DIN2'));
for d =1:length(din2s) %label the DIN condition
EEG.event(din2s(d)).Condition = EEG.event(din2s(d)-1).Condition;
end
num_stm = numel(find(strcmp({EEG.event.type}, 'stms')));
num_din = length(din2s);
if num_stm < num_din %remove any extra DINs
for w = 1:length(din2s)
if ~(strcmp({EEG.event(din2s(w)-1).type}, 'stms'))
EEG.event(din2s(w)).type = 'EXTRA_DIN';
end
end
end
elseif contains(EEG.filename, 'RS')
task = 'RS'; %no labeling needed
elseif contains(EEG.filename, 'VEP')
task = 'VEP';
din3s = find(strcmp({EEG.event.type}, 'DIN3'));
if din3s(1) == 1 %if the first flag in a file is a DIN remove it
EEG.event(din3s(1)).type = 'EXTRA_DIN';
end
for d =1:length(din3s) %label the DIN conditions
EEG.event(din3s(d)).Condition = EEG.event(din3s(d)-1).Condition;
end
elseif contains(EEG.filename, 'FACE')
task = 'FACE';
dins = find(strcmp({EEG.event.type}, 'DIN3'));
%label Face Blocks
if length(dins) >= 100
block1 = EEG.event(1:dins(100));
else
block1 = EEG.event;
end
searchblock1_inverted = numel(find(strcmp({block1.Condition}, '2')))-1; %subtract 1 bc there is always 1 flag of each condition in the SESS rows
if searchblock1_inverted >=1
upright_condition_b1 = '1';
upright_condition_b2 = '4';
else
upright_condition_b1 = '4';
upright_condition_b2 = '1';
end
for d =1:length(dins)
%The condition for the din is set equal to whatever the condition of preceding flag
EEG.event(dins(d)).Condition = EEG.event(dins(d)-1).Condition;
if d <=100
EEG.event(dins(d)).Block = 1;
if strcmp(EEG.event(dins(d)-1).Condition, '1')
EEG.event(dins(d)).Condition = upright_condition_b1;
EEG.event(dins(d)-1).Condition = upright_condition_b1;
EEG.event(dins(d)+1).Condition = upright_condition_b1;
end
else
EEG.event(dins(d)).Block = 2;
if strcmp(EEG.event(dins(d)-1).Condition, '1')
EEG.event(dins(d)).Condition = upright_condition_b2;
EEG.event(dins(d)-1).Condition = upright_condition_b2;
EEG.event(dins(d)-2).Condition = upright_condition_b2;
end
end
end
num_stm = numel(find(strcmp({EEG.event.type}, 'stm+')));
num_din = length(dins);
if num_stm < num_din
for w = 1:length(dins)
if ~strcmp({EEG.event(dins(w)-1).type}, 'stm+')
EEG.event(dins(w)).type = 'EXTRA_DIN';
end
end
end
end
for i = 1:length(EEG.event)
EEG.event(i).Task = task; %label task variable
end
end
%% STEP 5.5: Get Line Noise Measure
% from HAPPE pipeline: see https://github.com/PINE-Lab/HAPPE for details
lineNoiseIn = struct('lineNoiseMethod', 'clean', ...
'lineNoiseChannels', 1:EEG.nbchan, 'Fs', EEG.srate, ...
'lineFrequencies', [60 120], 'p', 0.01, 'fScanBandWidth', 2, ...
'taperBandWidth', 2, 'taperWindowSize', 4, 'taperWindowStep', 4, ...
'tau', 100, 'pad', 2, 'fPassBand', [0 EEG.srate/2], ...
'maximumIterations', 10);
[outEEG, ~] = cleanLineNoise(EEG, lineNoiseIn);
neighbors = [59,60,61];
lnParams_harms_frequs = [];
lnMeans = [];
% LINE NOISE REDUCTION QM: Assesses the performance of line noise reduction.
lnMeans = assessPipelineStep('line noise reduction', reshape(EEG.data, ...
size(EEG.data, 1), []), reshape(outEEG.data, size(outEEG.data,1), ...
[]), lnMeans, EEG.srate, [neighbors lnParams_harms_frequs]) ;
lineNoise{run,1} = lnMeans(3); %grab only the 60 hz pre/post r value
%% STEP 6: Filter data
% Calculate filter order using the formula: m = dF / (df / fs), where m = filter order,
% df = transition band width, dF = normalized transition width, fs = sampling rate
% dF is specific for the window type. Hamming window dF = 3.3
high_transband = highpass; % high pass transition band
low_transband = 10; % low pass transition band
hp_fl_order = 3.3 / (high_transband / EEG.srate);
lp_fl_order = 3.3 / (low_transband / EEG.srate);
% Round filter order to next higher even integer. Filter order is always even integer.
if mod(floor(hp_fl_order),2) == 0
hp_fl_order=floor(hp_fl_order);
elseif mod(floor(hp_fl_order),2) == 1
hp_fl_order=floor(hp_fl_order)+1;
end
if mod(floor(lp_fl_order),2) == 0
lp_fl_order=floor(lp_fl_order)+2;
elseif mod(floor(lp_fl_order),2) == 1
lp_fl_order=floor(lp_fl_order)+1;
end
% Calculate cutoff frequency
high_cutoff = highpass/2;
low_cutoff = lowpass + (low_transband/2);
% Performing high pass filtering
EEG = eeg_checkset( EEG );
EEG = pop_firws(EEG, 'fcutoff', high_cutoff, 'ftype', 'highpass', 'wtype', 'hamming', 'forder', hp_fl_order, 'minphase', 0);
EEG = eeg_checkset( EEG );
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
% pop_firws() - filter window type hamming ('wtype', 'hamming')
% pop_firws() - applying zero-phase (non-causal) filter ('minphase', 0)
% Performing low pass filtering
EEG = eeg_checkset( EEG );
EEG = pop_firws(EEG, 'fcutoff', low_cutoff, 'ftype', 'lowpass', 'wtype', 'hamming', 'forder', lp_fl_order, 'minphase', 0);
EEG = eeg_checkset( EEG );
% pop_firws() - transition band width: 10 Hz
% pop_firws() - filter window type hamming ('wtype', 'hamming')
% pop_firws() - applying zero-phase (non-causal) filter ('minphase', 0)
%% Step 6.5: Save individual files
if output_format==1
EEG = eeg_checkset( EEG );
EEG = pop_editset(EEG, 'setname', strrep(datafile_names{run}, ext, '_filtered_data'));
EEG = pop_saveset( EEG,'filename',strrep(datafile_names{run}, ext, '_filtered_data.set'),'filepath', [output_location filesep 'filtered_data' filesep]); % save .set format
elseif output_format==2
save([[output_location filesep 'filtered_data' filesep ] strrep(datafile_names{run}, ext, '_filtered_data.mat')], 'EEG'); % save .mat format
end
end
%% Step 6.7: Merge Data (based off of shared script from lydia)
[EEG, event_struct] = merge_data(output_location, file_extension, subses);
%% Initialize output variables
reference_used_for_faster=[]; % reference channel used for running faster to identify bad channel/s
faster_bad_channels=[]; % number of bad channel/s identified by faster
ica_preparation_bad_channels=[]; % number of bad channel/s due to channel/s exceeding xx% of artifacted epochs
length_ica_data=[]; % length of data (in second) fed into ICA decomposition
total_ICs=[]; % total independent components (ICs)
ICs_removed=[]; % number of artifacted ICs
total_epochs_before_artifact_rejection=[];
total_epochs_after_artifact_rejection=[];
total_channels_interpolated=[]; % total_channels_interpolated=faster_bad_channels+ica_preparation_bad_channels
%% STEP 7: Run faster to find bad channels
% First check whether reference channel (i.e. zeroed channels) is present in data
% reference channel is needed to run faster
ref_chan=[]; FASTbadChans=[]; all_chan_bad_FAST=0;
ref_chan=find(any(EEG.data, 2)==0);
if numel(ref_chan)>1
error(['There are more than 1 zeroed channel (i.e. zero value throughout recording) in data.'...
' Only reference channel should be zeroed channel. Delete the zeroed channel/s which is not reference channel.']);
elseif numel(ref_chan)==1
list_properties = channel_properties(EEG, 1:EEG.nbchan, ref_chan); % run faster
FASTbadIdx=min_z(list_properties);
FASTbadChans=find(FASTbadIdx==1);
FASTbadChans=FASTbadChans(FASTbadChans~=ref_chan);
for i = 1 : run %since faster is the same for all runs
reference_used_for_faster{i}={EEG.chanlocs(ref_chan).labels};
end
EEG = eeg_checkset(EEG);
channels_analysed=EEG.chanlocs; % keep full channel locations to use later for interpolation of bad channels
elseif numel(ref_chan)==0
warning('Reference channel is not present in data. Cz channel will be used as reference channel.');
ref_chan=find(strcmp({EEG.chanlocs.labels}, 'Cz')); % find Cz channel index
EEG_copy=[];
EEG_copy=EEG; % make a copy of the dataset
EEG_copy = pop_reref( EEG_copy, ref_chan,'keepref','on'); % rerefer to Cz in copied dataset
EEG_copy = eeg_checkset(EEG_copy);
list_properties = channel_properties(EEG_copy, 1:EEG_copy.nbchan, ref_chan); % run faster on copied dataset
FASTbadIdx=min_z(list_properties);
FASTbadChans=find(FASTbadIdx==1);
channels_analysed=EEG.chanlocs;
for i = 1 : run %since faster is the same for all runs
reference_used_for_faster{i}={EEG.chanlocs(ref_chan).labels};
end
end
% If FASTER identifies all channels as bad channels, save the dataset
% at this stage and ignore the remaining of the preprocessing.
if numel(FASTbadChans)==EEG.nbchan || numel(FASTbadChans)+1==EEG.nbchan
all_chan_bad_FAST=1;
warning(['No usable data for datafile', datafile_names{run}]);
if output_format==1
EEG = eeg_checkset(EEG);
EEG = pop_editset(EEG, 'setname', strrep(datafile_names{run}, ext, '_no_usable_data_all_bad_channels'));
EEG = pop_saveset(EEG, 'filename', strrep(datafile_names{run}, ext, '_no_usable_data_all_bad_channels.set'),'filepath', [output_location filesep 'processed_data' filesep ]); % save .set format
elseif output_format==2
save([[output_location filesep 'processed_data' filesep ] strrep(datafile_names{run}, ext, '_no_usable_data_all_bad_channels.mat')], 'EEG'); % save .mat format
end
else
% Reject channels that are bad as identified by Faster
EEG = pop_select( EEG,'nochannel', FASTbadChans);
EEG = eeg_checkset(EEG);
if numel(ref_chan)==1
ref_chan=find(any(EEG.data, 2)==0);
EEG = pop_select( EEG,'nochannel', ref_chan); % remove reference channel
end
end
if numel(FASTbadChans)==0
for i = 1 : run
faster_bad_channels{i}='0';
end
else
for i = 1 : run
faster_bad_channels{i}=num2str(FASTbadChans');
end
end
if all_chan_bad_FAST==1
for i = 1 : run
faster_bad_channels{i}='0';
ica_preparation_bad_channels{i}='0';
length_ica_data(i)=0;
total_ICs(i)=0;
ICs_removed{i}='0';
total_epochs_before_artifact_rejection(i)=0;
total_epochs_after_artifact_rejection(i)=0;
total_channels_interpolated(i)=0;
end
end
%% STEP 8: Prepare data for ICA
EEG_copy=[];
EEG_copy=EEG; % make a copy of the dataset
EEG_copy = eeg_checkset(EEG_copy);
% Perform 1Hz high pass filter on copied dataset
transband = 1;
fl_cutoff = transband/2;
fl_order = 3.3 / (transband / EEG.srate);
if mod(floor(fl_order),2) == 0
fl_order=floor(fl_order);
elseif mod(floor(fl_order),2) == 1
fl_order=floor(fl_order)+1;
end
EEG_copy = pop_firws(EEG_copy, 'fcutoff', fl_cutoff, 'ftype', 'highpass', 'wtype', 'hamming', 'forder', fl_order, 'minphase', 0);
EEG_copy = eeg_checkset(EEG_copy);
% Create 1 second epoch
EEG_copy=eeg_regepochs(EEG_copy,'recurrence', 1, 'limits',[0 1], 'rmbase', [NaN], 'eventtype', '999'); % insert temporary marker 1 second apart and create epochs
EEG_copy = eeg_checkset(EEG_copy);
% Find bad epochs and delete them from dataset
vol_thrs = [-1000 1000]; % [lower upper] threshold limit(s) in uV.
emg_thrs = [-100 30]; % [lower upper] threshold limit(s) in dB.
emg_freqs_limit = [20 40]; % [lower upper] frequency limit(s) in Hz.
% Find channel/s with xx% of artifacted 1-second epochs and delete them
chanCounter = 1; ica_prep_badChans = [];
numEpochs =EEG_copy.trials; % find the number of epochs
all_bad_channels=0;
for ch=1:EEG_copy.nbchan
% Find artifaceted epochs by detecting outlier voltage
EEG_copy = pop_eegthresh(EEG_copy,1, ch, vol_thrs(1), vol_thrs(2), EEG_copy.xmin, EEG_copy.xmax, 0, 0);
EEG_copy = eeg_checkset( EEG_copy );
% 1 : data type (1: electrode, 0: component)
% 0 : display with previously marked rejections? (0: no, 1: yes)
% 0 : reject marked trials? (0: no (but store the marks), 1:yes)
% Find artifaceted epochs by using thresholding of frequencies in the data.
% this method mainly rejects muscle movement (EMG) artifacts
EEG_copy = pop_rejspec( EEG_copy, 1,'elecrange',ch ,'method','fft','threshold', emg_thrs, 'freqlimits', emg_freqs_limit, 'eegplotplotallrej', 0, 'eegplotreject', 0);
% method : method to compute spectrum (fft)
% threshold : [lower upper] threshold limit(s) in dB.
% freqlimits : [lower upper] frequency limit(s) in Hz.
% eegplotplotallrej : 0 = Do not superpose rejection marks on previous marks stored in the dataset.
% eegplotreject : 0 = Do not reject marked trials (but store the marks).
% Find number of artifacted epochs
EEG_copy = eeg_checkset( EEG_copy );
EEG_copy = eeg_rejsuperpose( EEG_copy, 1, 1, 1, 1, 1, 1, 1, 1);
artifacted_epochs=EEG_copy.reject.rejglobal;
% Find bad channel / channel with more than 20% artifacted epochs
if sum(artifacted_epochs) > (numEpochs*20/100)
ica_prep_badChans(chanCounter) = ch;
chanCounter=chanCounter+1;
end
end
% If all channels are bad, save the dataset at this stage and ignore the remaining of the preprocessing.
if numel(ica_prep_badChans)==EEG.nbchan || numel(ica_prep_badChans)+1==EEG.nbchan
all_bad_channels=1;
warning(['No usable data for datafile', datafile_names{run}]);
if output_format==1
EEG = eeg_checkset(EEG);
EEG = pop_editset(EEG, 'setname', strrep(datafile_names{run}, ext, '_no_usable_data_all_bad_channels'));
EEG = pop_saveset(EEG, 'filename', strrep(datafile_names{run}, ext, '_no_usable_data_all_bad_channels.set'),'filepath', [output_location filesep 'processed_data' filesep ]); % save .set format
elseif output_format==2
save([[output_location filesep 'processed_data' filesep ] strrep(datafile_names{run}, ext, '_no_usable_data_all_bad_channels.mat')], 'EEG'); % save .mat format
end
else
% Reject bad channel - channel with more than xx% artifacted epochs
EEG_copy = pop_select( EEG_copy,'nochannel', ica_prep_badChans);
EEG_copy = eeg_checkset(EEG_copy);
end
for i = 1 : run
if numel(ica_prep_badChans)==0
ica_preparation_bad_channels{i}='0';
else
ica_preparation_bad_channels{i}=num2str(ica_prep_badChans);
end
end
if all_bad_channels == 1
for i = 1 : run
length_ica_data(i)=0;
total_ICs(i)=0;
ICs_removed{i}='0';
total_epochs_before_artifact_rejection(i)=0;
total_epochs_after_artifact_rejection(i)=0;
total_channels_interpolated(i)=0;
end
end
% Find the artifacted epochs across all channels and reject them before doing ICA.
EEG_copy = pop_eegthresh(EEG_copy,1, 1:EEG_copy.nbchan, vol_thrs(1), vol_thrs(2), EEG_copy.xmin, EEG_copy.xmax,0,0);
EEG_copy = eeg_checkset(EEG_copy);
% 1 : data type (1: electrode, 0: component)
% 0 : display with previously marked rejections? (0: no, 1: yes)
% 0 : reject marked trials? (0: no (but store the marks), 1:yes)
% Find artifaceted epochs by using power threshold in 20-40Hz frequency band.
% This method mainly rejects muscle movement (EMG) artifacts.
EEG_copy = pop_rejspec(EEG_copy, 1,'elecrange', 1:EEG_copy.nbchan, 'method', 'fft', 'threshold', emg_thrs ,'freqlimits', emg_freqs_limit, 'eegplotplotallrej', 0, 'eegplotreject', 0);
% method : method to compute spectrum (fft)
% threshold : [lower upper] threshold limit(s) in dB.
% freqlimits : [lower upper] frequency limit(s) in Hz.
% eegplotplotallrej : 0 = Do not superpose rejection marks on previous marks stored in the dataset.
% eegplotreject : 0 = Do not reject marked trials (but store the marks).
% Find the number of artifacted epochs and reject them
EEG_copy = eeg_checkset(EEG_copy);
EEG_copy = eeg_rejsuperpose(EEG_copy, 1, 1, 1, 1, 1, 1, 1, 1);
reject_artifacted_epochs=EEG_copy.reject.rejglobal;
EEG_copy = pop_rejepoch(EEG_copy, reject_artifacted_epochs, 0);
%% STEP 9: Run ICA
for i = 1 : run
length_ica_data(i)=EEG_copy.trials; % length of data (in second) fed into ICA
end
EEG_copy = eeg_checkset(EEG_copy);
%LY skip ICA for testing
EEG_copy = pop_runica(EEG_copy, 'icatype', 'runica', 'extended', 1, 'stop', 1E-7, 'interupt','off');
% Find the ICA weights that would be transferred to the original dataset
ICA_WINV=EEG_copy.icawinv;
ICA_SPHERE=EEG_copy.icasphere;
ICA_WEIGHTS=EEG_copy.icaweights;
ICA_CHANSIND=EEG_copy.icachansind;
% If channels were removed from copied dataset during preparation of ica, then remove
% those channels from original dataset as well before transferring ica weights.
EEG = eeg_checkset(EEG);
EEG = pop_select(EEG,'nochannel', ica_prep_badChans);
% Transfer the ICA weights of the copied dataset to the original dataset
EEG.icawinv=ICA_WINV;
EEG.icasphere=ICA_SPHERE;
EEG.icaweights=ICA_WEIGHTS;
EEG.icachansind=ICA_CHANSIND;
EEG = eeg_checkset(EEG);
%% STEP 10: Run adjust to find artifacted ICA components
badICs=[]; EEG_copy =[];
EEG_copy = EEG;
EEG_copy =eeg_regepochs(EEG_copy,'recurrence', 1, 'limits',[0 1], 'rmbase', [NaN], 'eventtype', '999'); % insert temporary marker 1 second apart and create epochs
EEG_copy = eeg_checkset(EEG_copy);
if size(EEG_copy.icaweights,1) == size(EEG_copy.icaweights,2)
if save_interim_result==1
badICs = adjusted_ADJUST(EEG_copy, [[output_location filesep 'ica_data' filesep] strrep(datafile_names{run}, ext, '_adjust_report')]);
else
badICs = adjusted_ADJUST(EEG_copy, [[output_location filesep 'processed_data' filesep] strrep(datafile_names{run}, ext, '_adjust_report')]);
end
close all;
else % if rank is less than the number of electrodes, throw a warning message
warning('The rank is less than the number of electrodes. ADJUST will be skipped. Artefacted ICs will have to be manually rejected for this participant');
end
% Mark the bad ICs found by ADJUST
for ic=1:length(badICs)
EEG.reject.gcompreject(1, badICs(ic))=1;
EEG = eeg_checkset(EEG);
end
for i = 1 : run
total_ICs(i)=size(EEG.icasphere, 1);
if numel(badICs)==0
ICs_removed{i}='0';
else
ICs_removed{i}=num2str(double(badICs));
end
end
%% Save dataset after ICA, if saving interim results was preferred
if save_interim_result==1
if output_format==1
EEG = eeg_checkset(EEG);
EEG = pop_editset(EEG, 'setname', [subses '_ica_data']);
EEG = pop_saveset(EEG, 'filename', [subses '_ica_data.set'],'filepath', [output_location filesep 'ica_data' filesep ]); % save .set format
elseif output_format==2
save([output_location filesep 'ica_data' filesep subses '_ica_data.mat'], 'EEG'); % save .mat format
end
end
%% STEP 11: Remove artifacted ICA components from data
all_bad_ICs=0;
ICs2remove=find(EEG.reject.gcompreject); % find ICs to remove
% If all ICs and bad, save data at this stage and ignore rest of the preprocessing for this run.
if numel(ICs2remove)==total_ICs(run)
all_bad_ICs=1;
warning(['No usable data for datafile']);
if output_format==1
EEG = eeg_checkset(EEG);
EEG = pop_editset(EEG, 'setname', [participant_label '_' session_label '_no_usable_data_all_bad_ICs']);
EEG = pop_saveset(EEG, 'filename', [participant_label '_' session_label '_no_usable_data_all_bad_ICs.set'],'filepath', [output_location filesep 'processed_data' filesep ]); % save .set format
elseif output_format==2
save([output_location filesep 'processed_data' filesep participant_label '_' session_label '_no_usable_data_all_bad_ICs.mat'], 'EEG'); % save .mat format
end
else
EEG = eeg_checkset( EEG );
EEG = pop_subcomp( EEG, ICs2remove, 0); % remove ICs from dataset
end
if all_bad_ICs==1
for i = 1 : run
total_epochs_before_artifact_rejection(i)=0;
total_epochs_after_artifact_rejection(i)=0;
total_channels_interpolated(i)=0;
end
end
%% STEP 11.5: Now seperate each task for remainder of processing
mEEG = deal(EEG);
for run = 1 : length(event_struct.file_names)
%% Step 11.75: Load task specific settings for processing
% 2. Enter the path of the folder where you want to save the processed data
s = grab_settings(event_struct.file_names(run), json_settings_file);
% 10. Do you want to remove/correct baseline?
remove_baseline = s.remove_baseline; % 0 = NO (no baseline correction), 1 = YES (baseline correction)
baseline_window = s.baseline_window; % baseline period in milliseconds (MS) [] = entire epoch
% 11. Do you want to remove artifact laden epoch based on voltage threshold?
voltthres_rejection = s.voltthres_rejection; % 0 = NO, 1 = YES
volt_threshold = s.volt_threshold; % lower and upper threshold (in uV)
%12. Do you want to interpolate epochs
interp_epoch = s.interp_epoch; % 0 = NO, 1 = YES.
frontal_channels = s.frontal_channels; % If you set interp_epoch = 1, enter the list of frontal channels to check (see manuscript for detail)
% recommended list for EGI 128 channel net: {'E1', 'E8', 'E14', 'E21', 'E25', 'E32', 'E17'}
%13. Do you want to interpolate the bad channels that were removed from data?
interp_channels = s.interp_channels; % 0 = NO (Do not interpolate), 1 = YES (interpolate missing channels)
% 14. Do you want to rereference your data?
rerefer_data = s.rerefer_data; % 0 = NO, 1 = YES
reref=s.reref; % Enter electrode name/s or number/s to be used for rereferencing
% For channel name/s enter, reref = {'channel_name', 'channel_name'};
% For channel number/s enter, reref = [channel_number, channel_number];
% For average rereference enter, reref = []; default is average rereference
%Specify that you are only interested in events for the given task
%EEG1 = pop_selectevent(mEEG, 'event', event_struct.indices{run},'deleteevents','on');
EEG = pop_selectevent(mEEG, 'input_file', event_struct.file_names{run}, 'deleteevents', 'on');
%% STEP 12: Segment data into fixed length epochs
if contains(event_struct.file_names{run}, 'MMN')
task = 'MMN';
elseif contains(event_struct.file_names{run}, 'RS')
task = 'RS';
elseif contains(event_struct.file_names{run}, 'VEP')
task = 'VEP';
elseif contains(event_struct.file_names{run}, 'FACE')
task = 'FACE';
end
Tasks(run) = string(task);
EEG = make_MADE_epochs(EEG, event_struct.file_names{run}, json_settings_file, task);
total_epochs_before_artifact_rejection(run)=EEG.trials;
%% STEP 13: Remove baseline
if remove_baseline==1
EEG = eeg_checkset( EEG );
EEG = pop_rmbase( EEG, baseline_window);
end
%% STEP 14: Artifact rejection
all_bad_epochs=0;
if voltthres_rejection==1 % check voltage threshold rejection
if interp_epoch==1 % check epoch level channel interpolation
chans=[]; chansidx=[];chans_labels2=[];
chans_labels2=cell(1,EEG.nbchan);
for i=1:EEG.nbchan
chans_labels2{i}= EEG.chanlocs(i).labels;
end
[chans,chansidx] = ismember(frontal_channels, chans_labels2);
frontal_channels_idx = chansidx(chansidx ~= 0);
badChans = zeros(EEG.nbchan, EEG.trials);
badepoch=zeros(1, EEG.trials);
if isempty(frontal_channels_idx)==1 % check whether there is any frontal channel in dataset to check
warning('No frontal channels from the list present in the data. Only epoch interpolation will be performed.');
else
% find artifaceted epochs by detecting outlier voltage in the specified channels list and remove epoch if artifacted in those channels
for ch =1:length(frontal_channels_idx)
EEG = pop_eegthresh(EEG,1, frontal_channels_idx(ch), volt_threshold(1), volt_threshold(2), EEG.xmin, EEG.xmax,0,0);
EEG = eeg_checkset( EEG );
EEG = eeg_rejsuperpose( EEG, 1, 1, 1, 1, 1, 1, 1, 1);
badChans(ch,:) = EEG.reject.rejglobal;
end
for ii=1:size(badChans, 2)
badepoch(ii)=sum(badChans(:,ii));
end
badepoch=logical(badepoch);
end
% If all epochs are artifacted, save the dataset and ignore rest of the preprocessing for this run.
if sum(badepoch)==EEG.trials || sum(badepoch)+1==EEG.trials
all_bad_epochs=1;
warning(['No usable data for datafile', event_struct.file_names{run}]);
if output_format==1
EEG = eeg_checkset(EEG);
EEG = pop_editset(EEG, 'setname', strrep(event_struct.file_names{run}, ext, '_no_usable_data_all_bad_epoch'));
EEG = pop_saveset(EEG, 'filename', strrep(event_struct.file_names{run}, ext, '_no_usable_data_all_bad_epoch.set'),'filepath', [output_location filesep 'processed_data' filesep ]); % save .set format
elseif output_format==2
save([[output_location filesep 'processed_data' filesep ] strrep(event_struct.file_names{run}, ext, '_no_usable_data_all_bad_epochs.mat')], 'EEG'); % save .mat format
end
else
EEG = pop_rejepoch( EEG, badepoch, 0);
EEG = eeg_checkset(EEG);
end
if all_bad_epochs==1
warning(['No usable data for datafile', event_struct.file_names{run}]);
else
% Interpolate artifacted data for all reaming channels
badChans = zeros(EEG.nbchan, EEG.trials);
% Find artifacted epochs by detecting outlier voltage but don't remove
for ch=1:EEG.nbchan
EEG = pop_eegthresh(EEG,1, ch, volt_threshold(1), volt_threshold(2), EEG.xmin, EEG.xmax,0,0);
EEG = eeg_checkset(EEG);
EEG = eeg_rejsuperpose(EEG, 1, 1, 1, 1, 1, 1, 1, 1);
badChans(ch,:) = EEG.reject.rejglobal;
end
tmpData = zeros(EEG.nbchan, EEG.pnts, EEG.trials);
for e = 1:EEG.trials
% Initialize variables EEGe and EEGe_interp;
EEGe = []; EEGe_interp = []; badChanNum = [];
% Select only this epoch (e)
EEGe = pop_selectevent( EEG, 'epoch', e, 'deleteevents', 'off', 'deleteepochs', 'on', 'invertepochs', 'off');
badChanNum = find(badChans(:,e)==1); % find which channels are bad for this epoch
EEGe_interp = eeg_interp(EEGe,badChanNum); %interpolate the bad channels for this epoch
tmpData(:,:,e) = EEGe_interp.data; % store interpolated data into matrix
end
EEG.data = tmpData; % now that all of the epochs have been interpolated, write the data back to the main file
% If more than 10% of channels in an epoch were interpolated, reject that epoch
badepoch=zeros(1, EEG.trials);
ii=1;
goodepoch = [];
for ei=1:EEG.trials
NumbadChan = badChans(:,ei); % find how many channels are bad in an epoch
if sum(NumbadChan) > round((10/100)*EEG.nbchan)% check if more than 10% are bad
badepoch (ei)= sum(NumbadChan);
else
goodepoch(ii)= ei; %LY 7/18/2023 for percent interpolated calc
ii=ii+1;
end
end
avginterp(run) = mean(sum(badChans(:,goodepoch),1));%LY 7/18/2023 for percent interpolated calc
stdinterp(run) = std(sum(badChans(:,goodepoch),1));%LY 7/18/2023 for percent interpolated calc
rangeinterp(run) = range(sum(badChans(:,goodepoch),1));%LY 7/18/2023 for percent interpolated calc
%avginterp_byfile(run) = avginterp;%LY 7/18/2023 for percent interpolated calc
badepoch=logical(badepoch);
end
% If all epochs are artifacted, save the dataset and ignore rest of the preprocessing for this run.
if sum(badepoch)==EEG.trials || sum(badepoch)+1==EEG.trials
all_bad_epochs=1;
warning(['No usable data for datafile', event_struct.file_names{run}]);
if output_format==1
EEG = eeg_checkset(EEG);
EEG = pop_editset(EEG, 'setname', strrep(event_struct.file_names{run}, ext, '_no_usable_data_all_bad_epochs'));
EEG = pop_saveset(EEG, 'filename', strrep(event_struct.file_names{run}, ext, '_no_usable_data_all_bad_epochs.set'),'filepath', [output_location filesep 'processed_data' filesep ]); % save .set format
elseif output_format==2
save([[output_location filesep 'processed_data' filesep ] strrep(event_struct.file_names{run}, ext, '_no_usable_data_all_bad_epochs.mat')], 'EEG'); % save .mat format
end
else
EEG = pop_rejepoch(EEG, badepoch, 0);
EEG = eeg_checkset(EEG);
end
else % if no epoch level channel interpolation
EEG = pop_eegthresh(EEG, 1, (1:EEG.nbchan), volt_threshold(1), volt_threshold(2), EEG.xmin, EEG.xmax, 0, 0);
EEG = eeg_checkset(EEG);
EEG = eeg_rejsuperpose( EEG, 1, 1, 1, 1, 1, 1, 1, 1);
end % end of epoch level channel interpolation if statement
% If all epochs are artifacted, save the dataset and ignore rest of the preprocessing for this run.
if sum(EEG.reject.rejthresh)==EEG.trials || sum(EEG.reject.rejthresh)+1==EEG.trials
all_bad_epochs=1;
warning(['No usable data for datafile', event_struct.file_names{run}]);
if output_format==1
EEG = eeg_checkset(EEG);
EEG = pop_editset(EEG, 'setname', strrep(event_struct.file_names{run}, ext, '_no_usable_data_all_bad_epochs'));
EEG = pop_saveset(EEG, 'filename', strrep(event_struct.file_names{run}, ext, '_no_usable_data_all_bad_epochs.set'),'filepath', [output_location filesep 'processed_data' filesep ]); % save .set format
elseif output_format==2
save([[output_location filesep 'processed_data' filesep ] strrep(event_struct.file_names{run}, ext, '_no_usable_data_all_bad_epochs.mat')], 'EEG'); % save .mat format
end
else
EEG = pop_rejepoch(EEG,(EEG.reject.rejthresh), 0);
EEG = eeg_checkset(EEG);
end
end % end of voltage threshold rejection if statement
% if all epochs are found bad during artifact rejection
if all_bad_epochs==1
total_epochs_after_artifact_rejection(run)=0;
total_channels_interpolated(run)=0;
continue % ignore rest of the processing and go to next datafile
else
if contains(event_struct.file_names{run}, 'FACE')
FACE_UpInv(run) = {sum(strcmp({EEG.event.Condition}, '1'))};
FACE_Inv(run) = {sum(strcmp({EEG.event.Condition}, '2'))};
FACE_Object(run) = {sum(strcmp({EEG.event.Condition}, '3'))};
FACE_UpObj(run) = {sum(strcmp({EEG.event.Condition}, '4'))};
total_epochs_after_artifact_rejection(run)= EEG.trials;
MMN_Standard(run) = {'n/a'};
MMN_PreDev(run) = {'n/a'};
MMN_Dev(run) = {'n/a'};
elseif contains(event_struct.file_names{run}, 'MMN')
FACE_UpInv(run) = {'n/a'};
FACE_Inv(run) = {'n/a'};
FACE_Object(run) = {'n/a'};
FACE_UpObj(run) = {'n/a'};
MMN_Standard(run) = {sum(strcmp({EEG.event.Condition}, '1'))};
MMN_PreDev(run) = {sum(strcmp({EEG.event.Condition}, '2'))};
MMN_Dev(run) = {sum(strcmp({EEG.event.Condition}, '3'))};
total_epochs_after_artifact_rejection(run)= EEG.trials;
else
FACE_UpInv(run) = {'n/a'};
FACE_Inv(run) = {'n/a'};
FACE_Object(run) = {'n/a'};
FACE_UpObj(run) = {'n/a'};
MMN_Standard(run) = {'n/a'};
MMN_PreDev(run) = {'n/a'};
MMN_Dev(run) = {'n/a'};
total_epochs_after_artifact_rejection(run)=EEG.trials;
end
end
%% STEP 15: Interpolate deleted channels
if interp_channels==1
EEG = eeg_interp(EEG, channels_analysed);
EEG = eeg_checkset(EEG);
end