forked from PyWiFeS/tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spectroastro2D.py
158 lines (128 loc) · 4.79 KB
/
spectroastro2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
"""
From the 26 March meeting, the plan was:
1) Fix 2D separation and overall R flux ratio. Find best fit PSF.
Issues... the best fit PSF can't just be a Gaussian. It is naturally the convolution of
multiple functional forms, i.e. something that is positive everywhere. On a quick search,
I can't find any obvious parameterisations. Options...
a: Just use the interpolated PSF with a correction for the companion. Problem: we don't
know how to correct for the companion, so will have to do this iteratively.
b: Use a "distortion map".
c: Use a functional form that can be negative and don't worry about details.
2) Extract spectra of A and B components. This is best done with a *good seeing* night and doesn't have to
be done for every data set. Save these spectra.
3) Fix B spectrum, and using the PSFs from step (1) extract the 2D positions of the A and
B components.
Star: GaiaDR2 6110141563309613184
...
is:
2.343 arcsec North
0.472 arcsec East
It is 3.726 mags fainter in Rp.
"""
from __future__ import division, print_function
import numpy as np
import matplotlib.pyplot as plt
import astropy.io.fits as pyfits
import glob
import scipy.optimize as op
import scipy.signal as sig
import time
import multiprocessing
import pdb
plt.ion()
#Settings
multiprocess=False #Setting this for a macbook changes total time from ~9 to ~5 seconds. Only a moderte help!
MIN_PEAK=20
NPSF_PARAMS = 5
WAVE = np.arange(6400.0,7000.0,0.25)
ddir = '/Users/mireland/data/pds70/190225/' #!!! This comes from
#ddir = '/Users/mireland/data/pds70/190225/' #From Marusa's reduction.
fns = np.sort(glob.glob(ddir + '*p11.fits'))
xscale = 1.0 #arcsec/pix
yscale = 0.5 #arcsec/pix
#---------------------------------
#Local function declarations
def PSF(p,x,y,companion_params=None):
"""A simple 2D PSF based on a Gaussian.
Parameters
----------
p: numpy array
Parameters for the PSF.
p[0]: x coordinate offset
p[1]: x coordinate width
p[2]: y coordinate offset
p[3]: y coordinate width
p[4]: Total flux
p[5]: 2nd order symmetric term
x: x coordinate in arcsec.
y: y coordinate in arcsec.
"""
xp = (x-p[0])/p[1]
yp = (y-p[2])/p[3]
if companion_params != None:
xp_comp = (x-p[0]-companion_params[1])/p[1]
yp_comp = (y-p[2]-companion_params[2])/p[3]
return p[4]*(np.exp(-(xp**2 + yp**2)/2.0) + companion_params[0]*np.exp(-(xp_comp**2 + yp_comp**2)/2.0))
else:
return p[4]*np.exp(-(xp**2 + yp**2)/2.0)
def PSF_resid(p,x,y,data, gain=1.0, rnoise=3.0):
"Residuals for fitting to a 1D Gaussian"
return ((PSF(p,x,y) - data)/10.).flatten() #np.sqrt(np.maximum(y,0) + rnoise**2)
def lsq_PSF( args ):
"""
Fit a Gaussian to data y(x)
Parameters
----------
args: tuple
guess_p, xfit, yfit
Notes
-----
nline: int
index of this line
guess_center: float
initial guess position
"""
fit = op.least_squares(PSF_resid, args[0], method='lm', \
xtol=1e-04, ftol=1e-4, f_scale=[3.,1.,1.], args=(args[1], args[2], args[3]))
#Check for unphysical solutions and set c_inv to zero for those solutions...
c_inv = fit.jac.T.dot(fit.jac)
return fit.x, c_inv
#---------------------------------
#Main "Script" code
pas = []
mjds = []
fits = []
sigs = []
yx_peak = np.zeros( (len(WAVE), 2), dtype=np.int)
peak_vals = np.zeros( len(WAVE) )
dds = []
#Loop through files and make a 2D fit.
for f in fns[-3:]:
ff = pyfits.open(f)
pas.append(ff[0].header['TELPAN'])
mjds.append(ff[0].header['MJD-OBS'])
dd = ff[0].data[:,8:-8,13:-2]
dds += [dd]
#Subtract off local sky contribution. Could be more sophisticated!
meds = np.median(dd.reshape(dd.shape[0], dd.shape[1]*dd.shape[2]), axis=1).reshape(dd.shape[0],1,1)
dd -= meds
#Find the maxima in every column.
for i in range(len(WAVE)):
yx_peak[i] = np.unravel_index(np.argmax(dd[i]), dd[i].shape)
peak_vals[i] = dd[i, yx_peak[i][0], yx_peak[i][1]]
#Create the x and y arrays
xs, ys = np.meshgrid(np.arange(dd.shape[2])*xscale, np.arange(dd.shape[1])*yscale)
#Now fit to every wavelength
for i in range(len(WAVE)):
fit, sig = lsq_PSF( ([yx_peak[i,1]*xscale,1,yx_peak[i,0]*yscale,1,peak_vals[i]], xs, ys, dd[i]) )
fits += [fit]
sigs += [sig]
fits = np.array(fits)
fits = fits.reshape( (len(fns), len(WAVE), NPSF_PARAMS) )
good = np.where(np.median(fits[:,:,4], axis=1) > 100)[0]
#Now find an average offset as a function of wavelength.
NE_offset = np.zeros( (len(WAVE),2) )
for i in good:
NE_offset[:,0] += np.cos(np.radians(pas[i]))*fits[i,:,2] + np.sin(np.radians(pas[i]))*fits[i,:,0]
NE_offset[:,1] += np.cos(np.radians(pas[i]))*fits[i,:,0] - np.sin(np.radians(pas[i]))*fits[i,:,2]
NE_offset /= len(fns)