diff --git a/doc/source/whatsnew/v0.21.0.txt b/doc/source/whatsnew/v0.21.0.txt index 8b2c4d16f4e1a..05d35545593c0 100644 --- a/doc/source/whatsnew/v0.21.0.txt +++ b/doc/source/whatsnew/v0.21.0.txt @@ -369,6 +369,7 @@ Reshaping - Fixes regression from 0.20, :func:`Series.aggregate` and :func:`DataFrame.aggregate` allow dictionaries as return values again (:issue:`16741`) - Fixes dtype of result with integer dtype input, from :func:`pivot_table` when called with ``margins=True`` (:issue:`17013`) - Bug in :func:`crosstab` where passing two ``Series`` with the same name raised a ``KeyError`` (:issue:`13279`) +- :func:`Series.argmin`, :func:`Series.argmax`, and their counterparts on ``DataFrame`` and groupby objects work correctly with floating point data that contains infinite values (:issue:`13595`). Numeric ^^^^^^^ diff --git a/pandas/core/nanops.py b/pandas/core/nanops.py index 2f4e437c0ae61..b2bbf1c75b7ea 100644 --- a/pandas/core/nanops.py +++ b/pandas/core/nanops.py @@ -486,23 +486,23 @@ def reduction(values, axis=None, skipna=True): nanmax = _nanminmax('max', fill_value_typ='-inf') +@disallow('O') def nanargmax(values, axis=None, skipna=True): """ Returns -1 in the NA case """ - values, mask, dtype, _ = _get_values(values, skipna, fill_value_typ='-inf', - isfinite=True) + values, mask, dtype, _ = _get_values(values, skipna, fill_value_typ='-inf') result = values.argmax(axis) result = _maybe_arg_null_out(result, axis, mask, skipna) return result +@disallow('O') def nanargmin(values, axis=None, skipna=True): """ Returns -1 in the NA case """ - values, mask, dtype, _ = _get_values(values, skipna, fill_value_typ='+inf', - isfinite=True) + values, mask, dtype, _ = _get_values(values, skipna, fill_value_typ='+inf') result = values.argmin(axis) result = _maybe_arg_null_out(result, axis, mask, skipna) return result diff --git a/pandas/tests/groupby/test_groupby.py b/pandas/tests/groupby/test_groupby.py index 0dea1e8447b2b..9983adc95b68f 100644 --- a/pandas/tests/groupby/test_groupby.py +++ b/pandas/tests/groupby/test_groupby.py @@ -2339,7 +2339,8 @@ def test_non_cython_api(self): assert_frame_equal(result, expected) # idxmax - expected = DataFrame([[0], [nan]], columns=['B'], index=[1, 3]) + expected = DataFrame([[0.0], [nan]], columns=['B'], + index=[1, 3]) expected.index.name = 'A' result = g.idxmax() assert_frame_equal(result, expected) diff --git a/pandas/tests/series/test_operators.py b/pandas/tests/series/test_operators.py index 991c5ff625554..9710e480188e3 100644 --- a/pandas/tests/series/test_operators.py +++ b/pandas/tests/series/test_operators.py @@ -1857,3 +1857,45 @@ def test_op_duplicate_index(self): result = s1 + s2 expected = pd.Series([11, 12, np.nan], index=[1, 1, 2]) assert_series_equal(result, expected) + + def test_argminmax(self): + # Series.argmin, Series.argmax are aliased to Series.idxmin, + # Series.idxmax + + # Expected behavior for empty Series + s = pd.Series([]) + + with pytest.raises(ValueError): + s.argmin() + with pytest.raises(ValueError): + s.argmin(skipna=False) + with pytest.raises(ValueError): + s.argmax() + with pytest.raises(ValueError): + s.argmax(skipna=False) + + # For numeric data with NA and Inf (GH #13595) + s = pd.Series([0, -np.inf, np.inf, np.nan]) + + assert s.argmin() == 1 + assert np.isnan(s.argmin(skipna=False)) + + assert s.argmax() == 2 + assert np.isnan(s.argmax(skipna=False)) + + # Using old-style behavior that treats floating point nan, -inf, and + # +inf as missing + s = pd.Series([0, -np.inf, np.inf, np.nan]) + + with pd.option_context('mode.use_inf_as_null', True): + assert s.argmin() == 0 + assert np.isnan(s.argmin(skipna=False)) + assert s.argmax() == 0 + np.isnan(s.argmax(skipna=False)) + + # For strings and mixed data types + s = pd.Series(['foo', 'foo', 'bar', 'bar', None, np.nan, 'baz']) + with pytest.raises(TypeError): + s.argmin() + with pytest.raises(TypeError): + s.argmax()