forked from Sijin-ZhangLab/PanMyeloid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSCINEC_LAMP3_cDCs_with_different_origins.R
176 lines (140 loc) · 7.91 KB
/
SCINEC_LAMP3_cDCs_with_different_origins.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
## /data2/csj/Pan_Myeloid/A20191105/SCENIC_analysis
## /data2/csj/tools/R-3.6.3/bin/R
.libPaths("/data2/csj/tools/Rlib3.6.3")
library(SCENIC)
### load gene expression
h5ad <- readRDS("/data2/csj/Pan_Myeloid/A20191105/NicheNet_analysis/cDC_for_NicheNet.rds")
cellInfo <- h5ad$metadata[h5ad$metadata$MajorCluster %in% c("cDC3-cDC2","cDC3-cDC1"),]
exprMat <- h5ad$expression[,rownames(cellInfo)]
setwd("/data2/csj/Pan_Myeloid/A20191105/SCENIC_analysis/LAMP3_cDC")
cellInfo <- data.frame(cellInfo)
cellTypeColumn <- "MajorCluster"
colnames(cellInfo)[which(colnames(cellInfo)==cellTypeColumn)] <- "CellType"
cbind(table(cellInfo$CellType))
dir.create("int")
saveRDS(cellInfo, file="int/cellInfo.Rds")
# Color to assign to the variables (same format as for NMF::aheatmap)
colVars <- list(CellType=c(
"cDC3-cDC1"="darkorange",
"cDC3-cDC2"="red3"
))
colVars$CellType <- colVars$CellType[intersect(names(colVars$CellType), cellInfo$CellType)]
saveRDS(colVars, file="int/colVars.Rds")
plot.new(); legend(0,1, fill=colVars$CellType, legend=names(colVars$CellType))
### Initialize settings
library(SCENIC)
org="hgnc"
dbDir="/data2/csj/Pan_Myeloid/A20191105/SCENIC_analysis/cisTarget" # RcisTarget databases
myDatasetTitle="SCENIC for LAMP3" # choose a name for your analysis
data(defaultDbNames)
dbs <- defaultDbNames[[org]]
scenicOptions <- initializeScenic(org=org, dbDir=dbDir, dbs=dbs, datasetTitle=myDatasetTitle, nCores=10)
scenicOptions@inputDatasetInfo$cellInfo <- "int/cellInfo.Rds"
scenicOptions@inputDatasetInfo$colVars <- "int/colVars.Rds"
saveRDS(scenicOptions, file="int/scenicOptions.Rds")
### Co-expression network
# (Adjust minimum values according to your dataset)
genesKept <- geneFiltering(exprMat, scenicOptions=scenicOptions,
minCountsPerGene=3*.01*ncol(exprMat),
minSamples=ncol(exprMat)*.01)
exprMat_filtered <- exprMat[genesKept, ]
runCorrelation(exprMat_filtered, scenicOptions)
# export the data for GRNBoost
exportsForArboreto(exprMat_filtered, scenicOptions, dir = "int")
# TF list written as: int/1.1_inputTFs.txt
# Transposed expression matrix written as: int/1.1_exprMatrix_filtered_t.txt
### runGenie3(exprMat_filtered_log, scenicOptions) ## this step is time-consuming
### run GRNBoost in python
# source activate arboreto-env ## activate the conda environment we just created for GRNBoost (pandas version 0.23.0)
## using old version of pandas
## pip show pandas
## pip uninstall pandas
## pip install pandas==0.23.0 --user
# python run_grnboost2.py
## pip install pandas --upgrade --users
### Build and score the GRN
GRNBoost_out <- read.table("int/net1_grn_output.tsv")
colnames(GRNBoost_out) <- c("TF", "Target", "weight")
saveRDS(GRNBoost_out,"int/1.4_GENIE3_linkList.Rds")
runSCENIC_1_coexNetwork2modules(scenicOptions)
runSCENIC_2_createRegulons(scenicOptions)
runSCENIC_3_scoreCells(scenicOptions, exprMat,skipHeatmap = TRUE)
# Regulators for cell type
regulonAUC <- loadInt(scenicOptions, "aucell_regulonAUC")
regulonAUC <- regulonAUC[onlyNonDuplicatedExtended(rownames(regulonAUC)),]
### pick significantly upregulated TF for each cluster
############## upregulated TF
TF_activity_DE <- function(regulonAUC,cellInfo,Cluster1){
cell_name_1 <- rownames(cellInfo[cellInfo$CellType %in% Cluster1,])
cell_name_2 <- rownames(cellInfo[!(cellInfo$CellType %in% Cluster1),])
Expression_1 <- getAUC(regulonAUC)[,cell_name_1]
Expression_2 <- getAUC(regulonAUC)[,cell_name_2]
## log FC
mean_c1 <- as.data.frame(rowMeans(as.matrix(Expression_1)))
colnames(mean_c1) <- "mean_c1"
mean_c2 <- as.data.frame(rowMeans(as.matrix(Expression_2)))
colnames(mean_c2) <- "mean_c2"
log2fc <- data.frame(log2fc = log2(mean_c1$mean_c1) - log2(mean_c2$mean_c2))
rownames(log2fc) <- rownames(mean_c1)
log2fc$gene <- rownames(log2fc)
## wilcox test
group.info <- data.frame(row.names = c(cell_name_1, cell_name_2))
group.info[cell_name_1, "group"] <- "Group1"
group.info[cell_name_2, "group"] <- "Group2"
group.info[, "group"] <- factor(x = group.info[, "group"])
data.use <- getAUC(regulonAUC)[, rownames(x = group.info), drop = FALSE]
p_val <- sapply(
X = 1:nrow(x = data.use),
FUN = function(x) {
return(wilcox.test(data.use[x, ] ~ group.info[, "group"])$p.value)
})
## BH correction
adj_p_val <- p.adjust(p_val, method="BH")
## DE table
result <- data.frame(gene=log2fc$gene, log2FC=log2fc$log2fc, Pvalue=p_val, Adj_pval=adj_p_val, CellType = Cluster1)
return(result)
}
library(AUCell)
TF_DE_res <- data.frame()
types <- unique(cellInfo$CellType)
for (i in types)
{
Cluster1 <- i
df<- TF_activity_DE(regulonAUC,cellInfo,Cluster1)
TF_DE_res <- rbind(TF_DE_res,df)
}
## top 10 for each cluster
library(dplyr)
TF_DE_filt <- TF_DE_res[TF_DE_res$Adj_pval < 0.01,]
TF_DE_filt_top <- TF_DE_filt %>% group_by(CellType) %>% top_n(n = 10, wt = log2FC)
##TF_DE_filt_top <- TF_DE_filt %>% group_by(CellType) %>% top_n(n = 10, wt = -Adj_pval)
TF_list <- as.vector(TF_DE_filt_top$gene)
regulonAUC_filt <- regulonAUC[TF_list,]
regulonActivity_byCellType <- sapply(split(rownames(cellInfo), cellInfo$CellType),
function(cells) rowMeans(getAUC(regulonAUC_filt)[,cells]))
regulonActivity_byCellType_Scaled <- t(scale(t(regulonActivity_byCellType), center = T, scale=T))
rownames(regulonActivity_byCellType_Scaled) <- gsub("_extended", "", rownames(regulonActivity_byCellType_Scaled))
## remove duplicated TF
p_TF <- pheatmap::pheatmap(t(regulonActivity_byCellType_Scaled[!duplicated(regulonActivity_byCellType_Scaled),]), fontsize_row=10,
color=colorRampPalette(c("blue","white","red"))(100), breaks=seq(-1, 1, length.out = 100),
treeheight_row=10, treeheight_col=10, border_color='white',cluster_cols=FALSE, cluster_rows=FALSE)
p_TF
pdf(file="/data2/csj/Pan_Myeloid/A20191105/SCENIC_analysis/LAMP3_cDC/TF_regulon.pdf",width=6.73, height=3.44)
p_TF
dev.off()
pheatmap::pheatmap(regulonActivity_byCellType[!duplicated(regulonActivity_byCellType),], fontsize_row=10,
color=colorRampPalette(c("blue","white","red"))(100),
treeheight_row=10, treeheight_col=10, border_color='white',cluster_cols=FALSE, cluster_rows=FALSE)
TF_DE_res$Significance <- ifelse(TF_DE_res$Adj_pval < 0.01 , "True", "False")
ggplot(TF_DE_res[TF_DE_res$CellType=='cDC3-cDC1',], aes(x = log2FC, y = -log10(Adj_pval))) +ylab("-Log10(adjusted Pvalue)")+ xlab("Cluster2 <- Log2(Fold Change) -> Cluster1")+
geom_point(aes(color = Significance))+
scale_color_manual(values = c("grey","red")) +
geom_text_repel(data = subset(TF_DE_res[TF_DE_res$CellType=='cDC3-cDC1',], Adj_pval < 0.01 & (log2FC>=0.5 | log2FC<=(-0.5)) ),
aes(label = gene),size = 4, box.padding = unit(0.3, "lines"),point.padding = unit(0.2, "lines"))+
theme(panel.grid.major =element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(),axis.line = element_line(colour = "black"))+theme(legend.position="right")+
ggtitle('Differentially Expressed Genes')+ theme(legend.text=element_text(size=16))+
theme(plot.title = element_text(hjust = 0.5))+theme(text = element_text(size=16),plot.title = element_text(size=16),
axis.text.x = element_text(size=16),
axis.text.y = element_text(size=16),
axis.title.x = element_text(size=16),
axis.title.y = element_text(size=16))