-
Notifications
You must be signed in to change notification settings - Fork 109
/
main.cpp
457 lines (424 loc) · 20.3 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
/**
* @file: main.cpp
* @author: Jan Hendriks (dahoc3150 [at] gmail.com)
* @date: Created on 2. Dezember 2012
* @brief: Example program on how to train your custom HOG detecting vector
* for use with openCV <code>hog.setSVMDetector(_descriptor)</code>;
*
* Copyright 2015 Jan Hendriks
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* For the paper regarding Histograms of Oriented Gradients (HOG), @see http://lear.inrialpes.fr/pubs/2005/DT05/
* You can populate the positive samples dir with files from the INRIA person detection dataset, @see http://pascal.inrialpes.fr/data/human/
* This program uses SVMlight as machine learning algorithm (@see http://svmlight.joachims.org/), but is not restricted to it
* Tested in Ubuntu Linux 64bit 12.04 "Precise Pangolin" with openCV 2.3.1, SVMlight 6.02, g++ 4.6.3
* and standard HOG settings, training images of size 64x128px.
*
* What this program basically does:
* 1. Read positive and negative training sample image files from specified directories
* 2. Calculate their HOG features and keep track of their classes (pos, neg)
* 3. Save the feature map (vector of vectors/matrix) to file system
* 4. Read in and pass the features and their classes to a machine learning algorithm, e.g. SVMlight
* 5. Train the machine learning algorithm using the specified parameters
* 6. Use the calculated support vectors and SVM model to calculate a single detecting descriptor vector
* 7. Dry-run the newly trained custom HOG descriptor against training set and against camera images, if available
*
* Build by issuing:
* g++ `pkg-config --cflags opencv` -c -g -MMD -MP -MF main.o.d -o main.o main.cpp
* gcc -c -g `pkg-config --cflags opencv` -MMD -MP -MF svmlight/svm_learn.o.d -o svmlight/svm_learn.o svmlight/svm_learn.c
* gcc -c -g `pkg-config --cflags opencv` -MMD -MP -MF svmlight/svm_hideo.o.d -o svmlight/svm_hideo.o svmlight/svm_hideo.c
* gcc -c -g `pkg-config --cflags opencv` -MMD -MP -MF svmlight/svm_common.o.d -o svmlight/svm_common.o svmlight/svm_common.c
* g++ `pkg-config --cflags opencv` -o trainhog main.o svmlight/svm_learn.o svmlight/svm_hideo.o svmlight/svm_common.o `pkg-config --libs opencv`
*
* Warning:
* Be aware that the program may consume a considerable amount of main memory, hard disk memory and time, dependent on the amount of training samples.
* Also be aware that (esp. for 32bit systems), there are limitations for the maximum file size which may take effect when writing the features file.
*
* Terms of use:
* This program is to be used as an example and is provided on an "as-is" basis without any warranties of any kind, either express or implied.
* Use at your own risk.
* For used third-party software, refer to their respective terms of use and licensing.
*/
// <editor-fold defaultstate="collapsed" desc="Definitions">
/* Parameter and macro definitions */
#include <stdio.h>
#include <dirent.h>
#ifdef __MINGW32__
#include <sys/stat.h>
#endif
#include <ios>
#include <fstream>
#include <stdexcept>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
#define SVMLIGHT 1
#define LIBSVM 2
//#define TRAINHOG_USEDSVM SVMLIGHT
#define TRAINHOG_USEDSVM SVMLIGHT
#if TRAINHOG_USEDSVM == SVMLIGHT
#include "svmlight/svmlight.h"
#define TRAINHOG_SVM_TO_TRAIN SVMlight
#elif TRAINHOG_USEDSVM == LIBSVM
#include "libsvm/libsvm.h"
#define TRAINHOG_SVM_TO_TRAIN libSVM
#endif
using namespace std;
using namespace cv;
// Directory containing positive sample images
static string posSamplesDir = "pos/";
// Directory containing negative sample images
static string negSamplesDir = "neg/";
// Set the file to write the features to
static string featuresFile = "genfiles/features.dat";
// Set the file to write the SVM model to
static string svmModelFile = "genfiles/svmlightmodel.dat";
// Set the file to write the resulting detecting descriptor vector to
static string descriptorVectorFile = "genfiles/descriptorvector.dat";
// Set the file to write the resulting opencv hog classifier as YAML file
static string cvHOGFile = "genfiles/cvHOGClassifier.yaml";
// HOG parameters for training that for some reason are not included in the HOG class
static const Size trainingPadding = Size(0, 0);
static const Size winStride = Size(8, 8);
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Helper functions">
/* Helper functions */
static string toLowerCase(const string& in) {
string t;
for (string::const_iterator i = in.begin(); i != in.end(); ++i) {
t += tolower(*i);
}
return t;
}
static void storeCursor(void) {
printf("\033[s");
}
static void resetCursor(void) {
printf("\033[u");
}
/**
* Saves the given descriptor vector to a file
* @param descriptorVector the descriptor vector to save
* @param _vectorIndices contains indices for the corresponding vector values (e.g. descriptorVector(0)=3.5f may have index 1)
* @param fileName
* @TODO Use _vectorIndices to write correct indices
*/
static void saveDescriptorVectorToFile(vector<float>& descriptorVector, vector<unsigned int>& _vectorIndices, string fileName) {
printf("Saving descriptor vector to file '%s'\n", fileName.c_str());
string separator = " "; // Use blank as default separator between single features
fstream File;
float percent;
File.open(fileName.c_str(), ios::out);
if (File.good() && File.is_open()) {
printf("Saving %lu descriptor vector features:\t", descriptorVector.size());
storeCursor();
for (int feature = 0; feature < descriptorVector.size(); ++feature) {
if ((feature % 10 == 0) || (feature == (descriptorVector.size()-1)) ) {
percent = ((1 + feature) * 100 / descriptorVector.size());
printf("%4u (%3.0f%%)", feature, percent);
fflush(stdout);
resetCursor();
}
File << descriptorVector.at(feature) << separator;
}
printf("\n");
File << endl;
File.flush();
File.close();
}
}
/**
* For unixoid systems only: Lists all files in a given directory and returns a vector of path+name in string format
* @param dirName
* @param fileNames found file names in specified directory
* @param validExtensions containing the valid file extensions for collection in lower case
*/
static void getFilesInDirectory(const string& dirName, vector<string>& fileNames, const vector<string>& validExtensions) {
printf("Opening directory %s\n", dirName.c_str());
#ifdef __MINGW32__
struct stat s;
#endif
struct dirent* ep;
size_t extensionLocation;
DIR* dp = opendir(dirName.c_str());
if (dp != NULL) {
while ((ep = readdir(dp))) {
// Ignore (sub-)directories like . , .. , .svn, etc.
#ifdef __MINGW32__
stat(ep->d_name, &s);
if (s.st_mode & S_IFDIR) {
continue;
}
#else
if (ep->d_type & DT_DIR) {
continue;
}
#endif
extensionLocation = string(ep->d_name).find_last_of("."); // Assume the last point marks beginning of extension like file.ext
// Check if extension is matching the wanted ones
string tempExt = toLowerCase(string(ep->d_name).substr(extensionLocation + 1));
if (find(validExtensions.begin(), validExtensions.end(), tempExt) != validExtensions.end()) {
printf("Found matching data file '%s'\n", ep->d_name);
fileNames.push_back((string) dirName + ep->d_name);
} else {
printf("Found file does not match required file type, skipping: '%s'\n", ep->d_name);
}
}
(void) closedir(dp);
} else {
printf("Error opening directory '%s'!\n", dirName.c_str());
}
return;
}
/**
* This is the actual calculation from the (input) image data to the HOG descriptor/feature vector using the hog.compute() function
* @param imageFilename file path of the image file to read and calculate feature vector from
* @param descriptorVector the returned calculated feature vector<float> ,
* I can't comprehend why openCV implementation returns std::vector<float> instead of cv::MatExpr_<float> (e.g. Mat<float>)
* @param hog HOGDescriptor containin HOG settings
*/
static void calculateFeaturesFromInput(const string& imageFilename, vector<float>& featureVector, HOGDescriptor& hog) {
/** for imread flags from openCV documentation,
* @see http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#Mat imread(const string& filename, int flags)
* @note If you get a compile-time error complaining about following line (esp. imread),
* you either do not have a current openCV version (>2.0)
* or the linking order is incorrect, try g++ -o openCVHogTrainer main.cpp `pkg-config --cflags --libs opencv`
*/
Mat imageData = imread(imageFilename, IMREAD_GRAYSCALE);
if (imageData.empty()) {
featureVector.clear();
printf("Error: HOG image '%s' is empty, features calculation skipped!\n", imageFilename.c_str());
return;
}
// Check for mismatching dimensions
if (imageData.cols != hog.winSize.width || imageData.rows != hog.winSize.height) {
featureVector.clear();
printf("Error: Image '%s' dimensions (%u x %u) do not match HOG window size (%u x %u)!\n", imageFilename.c_str(), imageData.cols, imageData.rows, hog.winSize.width, hog.winSize.height);
return;
}
vector<Point> locations;
hog.compute(imageData, featureVector, winStride, trainingPadding, locations);
imageData.release(); // Release the image again after features are extracted
}
/**
* Shows the detections in the image
* @param found vector containing valid detection rectangles
* @param imageData the image in which the detections are drawn
*/
static void showDetections(const vector<Point>& found, Mat& imageData) {
size_t i, j;
for (i = 0; i < found.size(); ++i) {
Point r = found[i];
// Rect_(_Tp _x, _Tp _y, _Tp _width, _Tp _height);
rectangle(imageData, Rect(r.x-16, r.y-32, 32, 64), Scalar(64, 255, 64), 3);
}
}
/**
* Shows the detections in the image
* @param found vector containing valid detection rectangles
* @param imageData the image in which the detections are drawn
*/
static void showDetections(const vector<Rect>& found, Mat& imageData) {
vector<Rect> found_filtered;
size_t i, j;
for (i = 0; i < found.size(); ++i) {
Rect r = found[i];
for (j = 0; j < found.size(); ++j)
if (j != i && (r & found[j]) == r)
break;
if (j == found.size())
found_filtered.push_back(r);
}
for (i = 0; i < found_filtered.size(); i++) {
Rect r = found_filtered[i];
rectangle(imageData, r.tl(), r.br(), Scalar(64, 255, 64), 3);
}
}
/**
* Test the trained detector against the same training set to get an approximate idea of the detector.
* Warning: This does not allow any statement about detection quality, as the detector might be overfitting.
* Detector quality must be determined using an independent test set.
* @param hog
*/
static void detectTrainingSetTest(const HOGDescriptor& hog, const double hitThreshold, const vector<string>& posFileNames, const vector<string>& negFileNames) {
unsigned int truePositives = 0;
unsigned int trueNegatives = 0;
unsigned int falsePositives = 0;
unsigned int falseNegatives = 0;
vector<Point> foundDetection;
// Walk over positive training samples, generate images and detect
for (vector<string>::const_iterator posTrainingIterator = posFileNames.begin(); posTrainingIterator != posFileNames.end(); ++posTrainingIterator) {
const Mat imageData = imread(*posTrainingIterator, IMREAD_GRAYSCALE);
hog.detect(imageData, foundDetection, hitThreshold, winStride, trainingPadding);
if (foundDetection.size() > 0) {
++truePositives;
falseNegatives += foundDetection.size() - 1;
} else {
++falseNegatives;
}
}
// Walk over negative training samples, generate images and detect
for (vector<string>::const_iterator negTrainingIterator = negFileNames.begin(); negTrainingIterator != negFileNames.end(); ++negTrainingIterator) {
const Mat imageData = imread(*negTrainingIterator, IMREAD_GRAYSCALE);
hog.detect(imageData, foundDetection, hitThreshold, winStride, trainingPadding);
if (foundDetection.size() > 0) {
falsePositives += foundDetection.size();
} else {
++trueNegatives;
}
}
printf("Results:\n\tTrue Positives: %u\n\tTrue Negatives: %u\n\tFalse Positives: %u\n\tFalse Negatives: %u\n", truePositives, trueNegatives, falsePositives, falseNegatives);
}
/**
* Test detection with custom HOG description vector
* @param hog
* @param hitThreshold threshold value for detection
* @param imageData
*/
static void detectTest(const HOGDescriptor& hog, const double hitThreshold, Mat& imageData) {
vector<Rect> found;
Size padding(Size(8, 8));
Size winStride(Size(8, 8));
hog.detectMultiScale(imageData, found, hitThreshold, winStride, padding);
showDetections(found, imageData);
}
// </editor-fold>
/**
* Main program entry point
* @param argc unused
* @param argv unused
* @return EXIT_SUCCESS (0) or EXIT_FAILURE (1)
*/
int main(int argc, char** argv) {
// <editor-fold defaultstate="collapsed" desc="Init">
HOGDescriptor hog; // Use standard parameters here
hog.winSize = Size(64, 128); // Default training images size as used in paper
// Get the files to train from somewhere
static vector<string> positiveTrainingImages;
static vector<string> negativeTrainingImages;
static vector<string> validExtensions;
validExtensions.push_back("jpg");
validExtensions.push_back("png");
validExtensions.push_back("ppm");
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Read image files">
getFilesInDirectory(posSamplesDir, positiveTrainingImages, validExtensions);
getFilesInDirectory(negSamplesDir, negativeTrainingImages, validExtensions);
/// Retrieve the descriptor vectors from the samples
unsigned long overallSamples = positiveTrainingImages.size() + negativeTrainingImages.size();
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Calculate HOG features and save to file">
// Make sure there are actually samples to train
if (overallSamples == 0) {
printf("No training sample files found, nothing to do!\n");
return EXIT_SUCCESS;
}
/// @WARNING: This is really important, some libraries (e.g. ROS) seems to set the system locale which takes decimal commata instead of points which causes the file input parsing to fail
setlocale(LC_ALL, "C"); // Do not use the system locale
setlocale(LC_NUMERIC,"C");
setlocale(LC_ALL, "POSIX");
printf("Reading files, generating HOG features and save them to file '%s':\n", featuresFile.c_str());
float percent;
/**
* Save the calculated descriptor vectors to a file in a format that can be used by SVMlight for training
* @NOTE: If you split these steps into separate steps:
* 1. calculating features into memory (e.g. into a cv::Mat or vector< vector<float> >),
* 2. saving features to file / directly inject from memory to machine learning algorithm,
* the program may consume a considerable amount of main memory
*/
fstream File;
File.open(featuresFile.c_str(), ios::out);
if (File.good() && File.is_open()) {
#if TRAINHOG_USEDSVM == SVMLIGHT
// Remove following line for libsvm which does not support comments
File << "# Use this file to train, e.g. SVMlight by issuing $ svm_learn -i 1 -a weights.txt " << featuresFile.c_str() << endl;
#endif
// Iterate over sample images
for (unsigned long currentFile = 0; currentFile < overallSamples; ++currentFile) {
storeCursor();
vector<float> featureVector;
// Get positive or negative sample image file path
const string currentImageFile = (currentFile < positiveTrainingImages.size() ? positiveTrainingImages.at(currentFile) : negativeTrainingImages.at(currentFile - positiveTrainingImages.size()));
// Output progress
if ( (currentFile+1) % 10 == 0 || (currentFile+1) == overallSamples ) {
percent = ((currentFile+1) * 100 / overallSamples);
printf("%5lu (%3.0f%%):\tFile '%s'", (currentFile+1), percent, currentImageFile.c_str());
fflush(stdout);
resetCursor();
}
// Calculate feature vector from current image file
calculateFeaturesFromInput(currentImageFile, featureVector, hog);
if (!featureVector.empty()) {
/* Put positive or negative sample class to file,
* true=positive, false=negative,
* and convert positive class to +1 and negative class to -1 for SVMlight
*/
File << ((currentFile < positiveTrainingImages.size()) ? "+1" : "-1");
// Save feature vector components
for (unsigned int feature = 0; feature < featureVector.size(); ++feature) {
File << " " << (feature + 1) << ":" << featureVector.at(feature);
}
File << endl;
}
}
printf("\n");
File.flush();
File.close();
} else {
printf("Error opening file '%s'!\n", featuresFile.c_str());
return EXIT_FAILURE;
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Pass features to machine learning algorithm">
/// Read in and train the calculated feature vectors
printf("Calling %s\n", TRAINHOG_SVM_TO_TRAIN::getInstance()->getSVMName());
TRAINHOG_SVM_TO_TRAIN::getInstance()->read_problem(const_cast<char*> (featuresFile.c_str()));
TRAINHOG_SVM_TO_TRAIN::getInstance()->train(); // Call the core libsvm training procedure
printf("Training done, saving model file!\n");
TRAINHOG_SVM_TO_TRAIN::getInstance()->saveModelToFile(svmModelFile);
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Generate single detecting feature vector from calculated SVM support vectors and SVM model">
printf("Generating representative single HOG feature vector using svmlight!\n");
vector<float> descriptorVector;
vector<unsigned int> descriptorVectorIndices;
// Generate a single detecting feature vector (v1 | b) from the trained support vectors, for use e.g. with the HOG algorithm
TRAINHOG_SVM_TO_TRAIN::getInstance()->getSingleDetectingVector(descriptorVector, descriptorVectorIndices);
// And save the precious to file system
saveDescriptorVectorToFile(descriptorVector, descriptorVectorIndices, descriptorVectorFile);
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Test detecting vector">
// Detector detection tolerance threshold
const double hitThreshold = TRAINHOG_SVM_TO_TRAIN::getInstance()->getThreshold();
// Set our custom detecting vector
hog.setSVMDetector(descriptorVector);
hog.save(cvHOGFile);
printf("Testing training phase using training set as test set (just to check if training is ok - no detection quality conclusion with this!)\n");
detectTrainingSetTest(hog, hitThreshold, positiveTrainingImages, negativeTrainingImages);
printf("Testing custom detection using camera\n");
VideoCapture cap(-1); // open the default camera
if(!cap.isOpened()) { // check if we succeeded
printf("Error opening camera!\n");
return EXIT_FAILURE;
}
Mat testImage;
while ((cvWaitKey(10) & 255) != 27) {
cap >> testImage; // get a new frame from camera
cvtColor(testImage, testImage, CV_BGR2GRAY); // Work on grayscale images as trained
detectTest(hog, hitThreshold, testImage);
imshow("HOG custom detection", testImage);
}
// </editor-fold>
return EXIT_SUCCESS;
}