-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathdino-5scale_transnext_base-12e_coco.py
76 lines (74 loc) · 2.89 KB
/
dino-5scale_transnext_base-12e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
_base_ = './dino-4scale_r50_8xb2-12e_coco.py'
fp16 = dict(loss_scale=512.)
depths = [5, 5, 23, 5]
# optimizer
num_levels = 5
model = dict(
num_feature_levels=num_levels,
backbone=dict(
type='transnext_base',
pretrain_size=224,
img_size=800,
pretrained=None,
scales=num_levels),
neck=dict(in_channels=[96, 192, 384, 768], num_outs=num_levels),
encoder=dict(layer_cfg=dict(self_attn_cfg=dict(num_levels=num_levels))),
decoder=dict(layer_cfg=dict(cross_attn_cfg=dict(num_levels=num_levels))))
backbone_nodecay = dict(lr_mult=0.1, decay_mult=0)
backbone_decay = dict(lr_mult=0.1)
custom_keys = {'attn.query_embedding': backbone_nodecay,
'relative_pos_bias_local': backbone_nodecay,
'cpb': backbone_nodecay,
'temperature': backbone_nodecay,
'attn.learnable': backbone_decay,
'attn.q.weight': backbone_decay,
'attn.q.bias': backbone_nodecay,
'attn.kv.weight': backbone_decay,
'attn.kv.bias': backbone_nodecay,
'attn.qkv.weight': backbone_decay,
'attn.qkv.bias': backbone_nodecay,
'attn.sr.weight': backbone_decay,
'attn.sr.bias': backbone_nodecay,
'attn.norm': backbone_nodecay,
'attn.proj.weight': backbone_decay,
'attn.proj.bias': backbone_nodecay,
'mlp.fc1.weight': backbone_decay,
'mlp.fc2.weight': backbone_decay,
'mlp.fc1.bias': backbone_nodecay,
'mlp.fc2.bias': backbone_nodecay,
'mlp.dwconv.dwconv.weight': backbone_decay,
'mlp.dwconv.dwconv.bias': backbone_nodecay, }
custom_keys.update({
f'backbone.norm{stage_id + 1}': backbone_nodecay
for stage_id in range(len(depths) - 1)
})
custom_keys.update({
f'backbone.patch_embed{stage_id + 1}.norm': backbone_nodecay
for stage_id in range(len(depths) - 1)
})
custom_keys.update({
f'backbone.patch_embed{stage_id + 1}.proj.weight': backbone_decay
for stage_id in range(len(depths) - 1)
})
custom_keys.update({
f'backbone.patch_embed{stage_id + 1}.proj.bias': backbone_nodecay
for stage_id in range(len(depths) - 1)
})
custom_keys.update({
f'backbone.block{stage_id + 1}.{block_id}.norm': backbone_nodecay
for stage_id, num_blocks in enumerate(depths)
for block_id in range(num_blocks)
})
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='AdamW',
lr=0.0001, # 0.0002 for DeformDETR
betas=(0.9, 0.999), weight_decay=0.05, ),
clip_grad=dict(max_norm=0.1, norm_type=2),
paramwise_cfg=dict(custom_keys=custom_keys, bias_decay_mult=0, norm_decay_mult=0, flat_decay_mult=0),
accumulative_counts=2,
) # custom_keys contains sampling_offsets and reference_points in DeformDETR # noqa
train_dataloader = dict(
batch_size=1, )