-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdeepFmMTL.py
89 lines (70 loc) · 4.46 KB
/
deepFmMTL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2019/8/21 17:04
# @Author : Daishijun
# @Site :
# @File : deepFmMTL.py
# @Software : PyCharm
import tensorflow as tf
import pandas as pd
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from sklearn.metrics import accuracy_score, log_loss, roc_auc_score
from sklearn.model_selection import train_test_split
# from deepctr.models import xDeepFM, DeepFM, DCN
# from deepFMwithMMoE import DeepFM
from deepFMwithMMoE import DeepFM
from deepctr.inputs import SparseFeat, DenseFeat, get_fixlen_feature_names
# from keras.optimizers import Adam
from tensorflow.python.keras.optimizers import Adam
from tensorflow.python.keras.callbacks import EarlyStopping
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)
data = pd.read_csv('./data/final_track2_train.txt', sep='\t', names=[
'uid', 'user_city', 'item_id', 'author_id', 'item_city', 'channel', 'finish', 'like', 'music_id', 'device', 'time', 'duration_time'])
sparse_features = ['uid', 'user_city', 'item_id', 'author_id', 'item_city', 'channel', 'music_id', 'device']
dense_features = ['time', 'duration_time']
data[sparse_features] = data[sparse_features].fillna('-1', )
data[dense_features] = data[dense_features].fillna(0,)
# target = ['finish']
target = ['finish','like']
for feat in sparse_features:
lbe = LabelEncoder()
data[feat] = lbe.fit_transform(data[feat])
mms = MinMaxScaler(feature_range=(0, 1))
data[dense_features] = mms.fit_transform(data[dense_features])
sparse_feature_columns = [SparseFeat(feat, data[feat].nunique()) #(特征名, 特征不同取值个数)生成SparseFeat对象,name == 特征名,dimension==该特征不同取值个数, dtype ==int32
for feat in sparse_features]
dense_feature_columns = [DenseFeat(feat, 1) #(特征名, dimension==1) 数据dtype == float32
for feat in dense_features]
dnn_feature_columns = sparse_feature_columns + dense_feature_columns
linear_feature_columns = sparse_feature_columns + dense_feature_columns
## 这里有多余的步骤,该方法中间为每个特征设置了Input层,但是没有返回,只返回了特征名称list,其实可以直接从上面的两个list合并得到。
feature_names = get_fixlen_feature_names(linear_feature_columns + dnn_feature_columns)
train, test = train_test_split(data, test_size=0.1)
train_model_input = [train[name] for name in feature_names]
test_model_input = [test[name] for name in feature_names]
train_labels = [train[target[0]].values, train[target[1]].values]
test_labels = [test[target[0]].values, test[target[1]].values]
#model = xDeepFM(linear_feature_columns, dnn_feature_columns, task='binary')
model = DeepFM(linear_feature_columns, dnn_feature_columns, task='binary',use_fm=True,
dnn_hidden_units=(128,128), dnn_dropout=0)
# model = DCN(dnn_feature_columns, embedding_size=8)
model.compile(Adam(lr=0.0001), "binary_crossentropy", metrics=['binary_crossentropy'], loss_weights=[0.6,0.4])
#es = EarlyStopping(monitor='val_binary_crossentropy')
history = model.fit(train_model_input, y={'finish_output':train_labels[0], 'like_output':train_labels[1]}, validation_split=0.3, callbacks=[EarlyStopping(monitor='val_loss', patience=3, verbose=0, mode='auto')],
batch_size=4096, epochs=10, verbose=1)
pred_ans_finish, pred_ans_like = model.predict(test_model_input, batch_size=2**14)
pred_finish = (pred_ans_finish*2).astype(int)
pred_like = (pred_ans_like*2).astype(int)
# print("test accuracy", round(accuracy_score(test[target].values, pred_finish), 4))
# print("test LogLoss", round(log_loss(test[target].values, pred_ans), 4))
# print("test AUC", round(roc_auc_score(test[target].values, pred_ans), 4))
print('test accuracy ==> finish:{} \t like:{}'.format(round(accuracy_score(test['finish'].values, pred_finish), 4),\
round(accuracy_score(test['like'].values, pred_like), 4)))
print('test LogLoss ==> finish:{} \t like:{}'.format(round(log_loss(test['finish'].values, pred_ans_finish), 4),\
round(log_loss(test['like'].values, pred_ans_like), 4)))
print('test AUC ==> finish:{} \t like:{}'.format(round(roc_auc_score(test['finish'].values, pred_ans_finish), 4),\
round(roc_auc_score(test['like'].values, pred_ans_like), 4)))