-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain2modelmmoe.py
92 lines (79 loc) · 4.66 KB
/
train2modelmmoe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import tensorflow as tf
from tensorflow.python.keras.layers import Input, Dense
from deepctr.inputs import input_from_feature_columns, get_linear_logit,build_input_features,combined_dnn_input
from deepctr.layers.core import PredictionLayer, DNN
from deepctr.layers.interaction import FM
from deepctr.layers.utils import concat_fun
from tensorflow.python.keras.initializers import VarianceScaling
from mymmoe import MMoE
def DeepFMmmoe(linear_feature_columns, dnn_feature_columns, embedding_size=8, use_fm=True, dnn_hidden_units=(128, 128),
l2_reg_linear=0.00001, l2_reg_embedding=0.00001, l2_reg_dnn=0, init_std=0.0001, seed=1024, dnn_dropout=0,
dnn_activation='relu', dnn_use_bn=False, task='binary', task_net_size=(128, )):
"""Instantiates the DeepFM Network architecture.
:param linear_feature_columns: An iterable containing all the features used by linear part of the model.
:param dnn_feature_columns: An iterable containing all the features used by deep part of the model.
:param embedding_size: positive integer,sparse feature embedding_size
:param use_fm: bool,use FM part or not
:param dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of DNN
:param l2_reg_linear: float. L2 regularizer strength applied to linear part
:param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
:param l2_reg_dnn: float. L2 regularizer strength applied to DNN
:param init_std: float,to use as the initialize std of embedding vector
:param seed: integer ,to use as random seed.
:param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate.
:param dnn_activation: Activation function to use in DNN
:param dnn_use_bn: bool. Whether use BatchNormalization before activation or not in DNN
:param task: str, ``"binary"`` for binary logloss or ``"regression"`` for regression loss
:return: A Keras model instance.
"""
features = build_input_features(linear_feature_columns + dnn_feature_columns)
inputs_list = list(features.values())
sparse_embedding_list, dense_value_list = input_from_feature_columns(features,dnn_feature_columns,
embedding_size,
l2_reg_embedding,init_std,
seed)
# linear_logit = get_linear_logit(features, linear_feature_columns, l2_reg=l2_reg_linear, init_std=init_std,
# seed=seed, prefix='linear')
#
# fm_input = concat_fun(sparse_embedding_list, axis=1)
# fm_logit = FM()(fm_input)
dnn_input = combined_dnn_input(sparse_embedding_list,dense_value_list)
#dnn_logit = tf.keras.layers.Dense(
# 1, use_bias=False, activation=None)(dnn_out)
mmoe_layers = MMoE(units=32, num_experts=4, num_tasks=2)(dnn_input)
output_layers = []
target=['finish', 'like']
# Build tower layer from MMoE layer
for index, task_layer in enumerate(mmoe_layers):
tower_layer = Dense(
units=128,
activation='relu',
kernel_initializer=VarianceScaling())(task_layer)
output_layer = Dense(
units=1,
name=target[index],
activation='sigmoid',
kernel_initializer=VarianceScaling())(tower_layer)
output_layers.append(output_layer)
# finish_logit = tf.keras.layers.add(
# [linear_logit, output_layers[0], fm_logit])
# like_logit = tf.keras.layers.add(
# [linear_logit, output_layers[1], fm_logit])
#
# output_finish = PredictionLayer(task, name='finish_')(finish_logit)
# output_like = PredictionLayer(task, name='like_')(like_logit)
model = tf.keras.models.Model(inputs=inputs_list, outputs=output_layers)#[output_finish, output_like])
return model
# if len(dnn_hidden_units) == 0 and use_fm == False: # only linear
# final_logit = linear_logit
# elif len(dnn_hidden_units) == 0 and use_fm == True: # linear + FM
# final_logit = tf.keras.layers.add([linear_logit, fm_logit])
# elif len(dnn_hidden_units) > 0 and use_fm == False: # linear + Deep
# final_logit = tf.keras.layers.add([linear_logit, dnn_logit])
# elif len(dnn_hidden_units) > 0 and use_fm == True: # linear + FM + Deep
# final_logit = tf.keras.layers.add([linear_logit, fm_logit, dnn_logit])
# else:
# raise NotImplementedError
# output = PredictionLayer(task)(final_logit)
# model = tf.keras.models.Model(inputs=inputs_list, outputs=output)
# return model