-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
mainloop_bwd_sm90_tma_gmma_ws.hpp
894 lines (796 loc) · 50.5 KB
/
mainloop_bwd_sm90_tma_gmma_ws.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include <cutlass/barrier.h>
#include "cutlass/pipeline/pipeline.hpp"
#include "cute/tensor.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "named_barrier.hpp"
#include "softmax.h"
#include "utils.h"
namespace flash {
using namespace cute;
template <int Stages, class ClusterShape_, class TileShape_MNK_, class Element_, class ElementAccum_, class ArchTag_,
bool Is_causal_, bool Is_local_, bool Varlen_, bool Deterministic,
bool dKV_swapAB_, bool dQ_swapAB_,
int AtomLayoutMSdP=1, int AtomLayoutNdKV=2, int AtomLayoutMdQ=1>
struct CollectiveMainloopBwd {
static constexpr int kStages = Stages;
using ClusterShape = ClusterShape_;
using TileShape_MNK = TileShape_MNK_;
using Element = Element_;
using ElementAccum = ElementAccum_;
using ArchTag = ArchTag_;
static constexpr bool Is_causal = Is_causal_;
static constexpr bool Is_local = Is_local_;
static constexpr bool Varlen = Varlen_;
static constexpr bool SdP_swapAB = true;
static constexpr bool dKV_swapAB = dKV_swapAB_;
static constexpr bool dQ_swapAB = dQ_swapAB_;
static_assert(!(SdP_swapAB && dKV_swapAB)); // If SdP_swapAB, then we don't swap for dKV
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
static constexpr int kHeadDim = get<2>(TileShape_MNK{});
static constexpr int NumdQWarpGroups = 2;
static constexpr int kNThreadsdQ = NumdQWarpGroups * cutlass::NumThreadsPerWarpGroup;
static_assert(ArchTag::kMinComputeCapability >= 90);
static_assert(get<0>(ClusterShape{}) == 1 && get<2>(ClusterShape{}) == 1);
static constexpr bool Mma_dQ_is_RS = AtomLayoutMSdP == 2 && AtomLayoutMdQ == 2 && !SdP_swapAB && !dQ_swapAB; // If dQ_swapAB we can't use RS
using TileShapeAtomSdP = std::conditional_t<
!SdP_swapAB,
Shape<Int<kBlockM>, Int<kBlockN / (2 / AtomLayoutMSdP)>, Int<kHeadDim>>,
Shape<Int<kBlockN>, Int<kBlockM / AtomLayoutMSdP>, Int<kHeadDim>>
>;
using AtomLayoutSdP = std::conditional_t<
!SdP_swapAB,
Layout<Shape<Int<AtomLayoutMSdP>, Int<2 / AtomLayoutMSdP>, _1>>,
Layout<Shape<Int<2 / AtomLayoutMSdP>, Int<AtomLayoutMSdP>, _1>>
>;
using TiledMmaSdP = decltype(cute::make_tiled_mma(
cute::GMMA::ss_op_selector<Element, Element, ElementAccum, TileShapeAtomSdP>(),
AtomLayoutSdP{}));
using TileShapeAtomdKV = std::conditional_t<
!dKV_swapAB,
Shape<Int<kBlockN>, Int<kHeadDim / (2 / AtomLayoutNdKV)>, Int<kBlockM>>,
Shape<Int<kHeadDim>, Int<kBlockN / AtomLayoutNdKV>, Int<kBlockM>>
>;
using AtomLayoutdKV = std::conditional_t<
!dKV_swapAB,
Layout<Shape<Int<AtomLayoutNdKV>, Int<2 / AtomLayoutNdKV>, _1>>,
Layout<Shape<Int<2 / AtomLayoutNdKV>, Int<AtomLayoutNdKV>, _1>>
>;
using TiledMmadKV = decltype(cute::make_tiled_mma(
std::conditional_t<
!SdP_swapAB,
decltype(cute::GMMA::ss_op_selector<Element, Element, ElementAccum, TileShapeAtomdKV, GMMA::Major::MN, GMMA::Major::MN>()),
decltype(cute::GMMA::rs_op_selector<Element, Element, ElementAccum, TileShapeAtomdKV, GMMA::Major::K, GMMA::Major::MN>())
>{},
AtomLayoutdKV{}));
using TileShapeAtomdQ = std::conditional_t<
!dQ_swapAB,
Shape<Int<kBlockM>, Int<kHeadDim / (NumdQWarpGroups / AtomLayoutMdQ)>, Int<kBlockN>>,
Shape<Int<kHeadDim>, Int<kBlockM / AtomLayoutMdQ>, Int<kBlockN>>
>;
using AtomLayoutdQ = std::conditional_t<
!dQ_swapAB,
Layout<Shape<Int<AtomLayoutMdQ>, Int<NumdQWarpGroups / AtomLayoutMdQ>, _1>>,
Layout<Shape<Int<NumdQWarpGroups / AtomLayoutMdQ>, Int<AtomLayoutMdQ>, _1>>
>;
static constexpr GMMA::Major MmadQMajorA = !dQ_swapAB ? GMMA::Major::K : GMMA::Major::MN;
static constexpr GMMA::Major MmadQMajorB = !dQ_swapAB ? GMMA::Major::MN : GMMA::Major::K;
using TiledMmadQ = decltype(cute::make_tiled_mma(
std::conditional_t<
!dQ_swapAB,
std::conditional_t<
Mma_dQ_is_RS,
decltype(cute::GMMA::rs_op_selector<Element, Element, ElementAccum, TileShapeAtomdQ, GMMA::Major::K, GMMA::Major::MN>()),
decltype(cute::GMMA::ss_op_selector<Element, Element, ElementAccum, TileShapeAtomdQ, GMMA::Major::K, GMMA::Major::MN>())
>,
decltype(cute::GMMA::ss_op_selector<Element, Element, ElementAccum, TileShapeAtomdQ, GMMA::Major::MN, GMMA::Major::K>())
>{},
AtomLayoutdQ{}));
using SmemLayoutAtomQ = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
Int<kBlockM>, Int<dKV_swapAB ? kHeadDim : kHeadDim / (2 / AtomLayoutNdKV)>>());
using SmemLayoutQ =
decltype(tile_to_shape(SmemLayoutAtomQ{},
make_shape(shape<0>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));
using SmemLayoutdO = SmemLayoutQ;
using SmemLayoutAtomK = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
Int<kBlockN>, Int<dQ_swapAB ? kHeadDim : kHeadDim / (NumdQWarpGroups / AtomLayoutMdQ)>>());
using SmemLayoutK = decltype(tile_to_shape(SmemLayoutAtomK{}, select<1, 2>(TileShape_MNK{})));
using SmemLayoutAtomV = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<1>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
using SmemLayoutV = decltype(tile_to_shape(SmemLayoutAtomV{}, select<1, 2>(TileShape_MNK{})));
using SmemLayoutAtomP = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<0>(TileShape_MNK{})), decltype(cute::get<1>(TileShape_MNK{}))>());
using SmemLayoutP = decltype(tile_to_shape(SmemLayoutAtomP{}, select<0, 1>(TileShape_MNK{})));
using SmemLayoutAtomdS = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<0>(TileShape_MNK{})), decltype(cute::get<1>(TileShape_MNK{}))>());
using SmemLayoutdS = decltype(tile_to_shape(SmemLayoutAtomdS{}, make_shape(Int<kBlockM>{}, Int<kBlockN>{}, Int<kStages>{})));
// Need stride to be multiple of 32, otherwise we get error (misaligned address) when doing TMA if e.g. kBlockM=80
using SmemLayoutLSE = cute::Layout<cute::Shape<Int<kBlockM>, Int<kStages>>, cute::Stride<_1, Int<cute::round_up(kBlockM, 32)>>>;
using SmemLayoutLSEMma = cute::Layout<cute::Shape<Int<kBlockN>, Int<kBlockM>, Int<kStages>>, cute::Stride<_0, _1, Int<cute::round_up(kBlockM, 32)>>>;
// Note this is the transpose in terms of the view, not in terms of memory.
using SmemLayoutQt =
decltype(cute::composition(SmemLayoutQ{},
make_layout(make_shape(get<2>(TileShape_MNK{}), get<0>(TileShape_MNK{}), Int<kStages>{}),
make_stride(Int<kBlockM>{}, _1{}, Int<kBlockM * kHeadDim>{}))));
using SmemLayoutdOt =
decltype(cute::composition(SmemLayoutdO{},
make_layout(make_shape(get<2>(TileShape_MNK{}), get<0>(TileShape_MNK{}), Int<kStages>{}),
make_stride(Int<kBlockM>{}, _1{}, Int<kBlockM * kHeadDim>{}))));
using SmemLayoutKt =
decltype(cute::composition(SmemLayoutK{},
make_layout(make_shape(get<2>(TileShape_MNK{}), get<1>(TileShape_MNK{})),
make_stride(Int<kBlockN>{}, _1{}))));
using SmemLayoutPt =
decltype(cute::composition(SmemLayoutP{},
make_layout(make_shape(get<1>(TileShape_MNK{}), get<0>(TileShape_MNK{})),
make_stride(Int<kBlockM>{}, _1{}))));
using SmemLayoutdSt =
decltype(cute::composition(SmemLayoutdS{},
make_layout(make_shape(Int<kBlockN>{}, Int<kBlockM>{}, Int<kStages>{}),
make_stride(Int<kBlockM>{}, _1{}, Int<kBlockM * kBlockN>{}))));
// Thread layout, 256 threads per row
using R2SLayoutAtomdQaccum = Layout<Shape<Int<kNThreadsdQ>>, Stride<_1>>;
using R2STiledCopydQaccum = decltype(make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{}, R2SLayoutAtomdQaccum{},
Layout<Shape < _4>>{})); // Val layout, 4 vals per store
using SmemLayoutdQaccum = Layout<Shape<Int<kBlockM * kHeadDim>>, Stride<_1>>;
// We want dQaccum smem to have last dimension 32, so that we only need to do 1 TMA instruction.
// The layout Layout_K_SW128_Atom<ElementAccum> has 32 elements per row.
// // TMA limit is that each dimension in smem must be <= 256.
// static constexpr int ElemsPerRowTMA = (kBlockM * kHeadDim) / 32 <= 256 ? 32 : 64;
static constexpr int ElemsPerRowTMA = 32; // If we change this, we'll also need to change the dQ shape in host.
static_assert((kBlockM * kHeadDim) % ElemsPerRowTMA == 0);
using TileShape_dQaccum = cute::Shape<Int<(kBlockM * kHeadDim) / ElemsPerRowTMA>, Int<ElemsPerRowTMA>>;
// using TileShape_dQaccum = cute::Shape<Int<kBlockM>, Int<kHeadDim>>;
using SmemLayoutdQaccumTMA =
decltype(tile_to_shape(GMMA::Layout_K_SW128_Atom<ElementAccum>{}, TileShape_dQaccum{}));
using SmemLayoutdQaccumTMANoSwizzle = decltype(get_nonswizzle_portion(SmemLayoutdQaccumTMA{}));
using SmemCopyAtomPdS = Copy_Atom<
std::conditional_t<!SdP_swapAB, cute::SM90_U32x4_STSM_N, cute::SM90_U16x8_STSM_T>,
Element>;
using SmemCopyAtomdKV = Copy_Atom<
std::conditional_t<!dKV_swapAB, cute::SM90_U32x4_STSM_N, cute::SM90_U16x8_STSM_T>,
Element>;
using GmemTiledCopyQdO = decltype(cutlass::gemm::collective::detail::sm90_cluster_shape_to_tma_atom(shape<1>(ClusterShape{})));
using GmemTiledCopyKV = cute::SM90_TMA_LOAD;
using GmemTiledCopydQaccum = cute::SM90_TMA_REDUCE_ADD;
using GmemTiledCopyLSE = cute::SM90_TMA_LOAD;
using ShapeQKV = cute::Shape<int32_t, int32_t, int32_t, int32_t>; // (seqlen, d, head, batch)
using StrideQKV = cute::Stride<int64_t, _1, int64_t, int64_t>;
using ShapeLSE = cute::Shape<int32_t, int32_t, int32_t>; // (seqlen, head, batch)
using StrideLSE = cute::Stride<_1, int64_t, int64_t>; // (seqlen, head, batch)
using TMA_QdO = decltype(make_tma_copy(
GmemTiledCopyQdO{},
make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQKV{}),
take<0, 2>(SmemLayoutQ{}),
select<0, 2>(TileShape_MNK{}),
size<1>(ClusterShape{}))); // mcast along N mode for this M load, if any
using TMA_K = decltype(make_tma_copy(
GmemTiledCopyKV{},
make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQKV{}),
SmemLayoutK{},
select<1, 2>(TileShape_MNK{}),
_1{})); // no mcast for KV
using TMA_V = decltype(make_tma_copy(
GmemTiledCopyKV{},
make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQKV{}),
SmemLayoutV{},
select<1, 2>(TileShape_MNK{}),
_1{})); // no mcast for KV
using TMA_add_dQ = decltype(make_tma_copy(
GmemTiledCopydQaccum{},
make_tensor(make_gmem_ptr(static_cast<ElementAccum*>(nullptr)), ShapeQKV{}, StrideQKV{}),
SmemLayoutdQaccumTMA{},
TileShape_dQaccum{},
_1{})); // no mcast for dQ
using TMA_LSE = decltype(make_tma_copy(
GmemTiledCopyLSE{},
make_tensor(make_gmem_ptr(static_cast<ElementAccum const*>(nullptr)), ShapeLSE{}, StrideLSE{}),
select<0>(SmemLayoutLSE{}),
select<0>(TileShape_MNK{}),
_1{})); // no mcast for LSE
static constexpr int NumMmaThreads = size(TiledMmaSdP{});
using MainloopPipeline = typename cutlass::PipelineTmaAsync<kStages>;
using PipelineState = typename MainloopPipeline::PipelineState;
// Set the bytes transferred in this TMA transaction (may involve multiple issues)
static constexpr uint32_t TmaTransactionBytesQ = static_cast<uint32_t>(size(take<0, 2>(SmemLayoutQ{})) * cutlass::sizeof_bits_v<Element> / 8);
static constexpr uint32_t TmaTransactionBytesK = static_cast<uint32_t>(size(SmemLayoutK{}) * cutlass::sizeof_bits_v<Element> / 8);
static constexpr uint32_t TmaTransactionBytesV = static_cast<uint32_t>(size(SmemLayoutV{}) * cutlass::sizeof_bits_v<Element> / 8);
static constexpr uint32_t TmaTransactionBytesLSE = static_cast<uint32_t>(size(select<0>(SmemLayoutLSE{})) * cutlass::sizeof_bits_v<ElementAccum> / 8);
struct TensorStorage : cute::aligned_struct<1024> {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>> smem_k;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutV>> smem_v;
// It's important that smem_dqacc is aligned to 1024 bytes for the TMA, so that the 1st row
// has no swizzle.
// If the address is only 128 bytes aligned, it's possible that the 1st row has swizzle
// and when we read it back in the postprocess kernel, the swizzle will not match.
cute::array_aligned<ElementAccum, cute::cosize_v<SmemLayoutdQaccum>, 1024> smem_dqacc;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>> smem_q;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutdO>> smem_do;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutdS>> smem_ds;
cute::array_aligned<ElementAccum, cute::cosize_v<SmemLayoutLSE>, 128> smem_lse;
cute::array_aligned<ElementAccum, cute::cosize_v<SmemLayoutLSE>, 128> smem_dpsum;
};
static constexpr int SharedStorageQdOSize = sizeof(decltype((TensorStorage{}).smem_q)) + sizeof(decltype((TensorStorage{}).smem_do)) + sizeof(decltype((TensorStorage{}).smem_ds)) + sizeof(decltype((TensorStorage{}).smem_dqacc));
// Host side kernel arguments
struct Arguments {
Element const* ptr_Q;
ShapeQKV const shape_Q;
StrideQKV const stride_Q;
Element const* ptr_K;
ShapeQKV const shape_K;
StrideQKV const stride_K;
Element const* ptr_V;
StrideQKV const stride_V;
Element const* ptr_dO;
StrideQKV const stride_dO;
ElementAccum* ptr_dQaccum;
ShapeQKV const shape_dQaccum;
StrideQKV const stride_dQaccum;
float const* ptr_LSE_log2;
ShapeLSE const shape_LSE;
StrideLSE const stride_LSE_log2;
float const* ptr_dPsum;
StrideLSE const stride_dPsum;
float const softmax_scale;
int num_batch;
int* dq_semaphore;
int const* cu_seqlens_q = nullptr;
int const* cu_seqlens_k = nullptr;
int const* seqused_k = nullptr;
int const* seqused_v = nullptr;
int window_size_left;
int window_size_right;
};
// Device side kernel params
struct Params {
ShapeQKV const shape_Q;
ShapeQKV const shape_K;
ShapeQKV const shape_dQaccum;
cutlass::FastDivmod qhead_per_khead_divmod;
TMA_QdO tma_load_Q, tma_load_dO;
TMA_K tma_load_K;
TMA_V tma_load_V;
TMA_add_dQ tma_add_dQ;
TMA_LSE tma_load_LSE, tma_load_dPsum;
float const* ptr_LSE_log2;
ShapeLSE const shape_LSE;
StrideLSE const stride_LSE_log2;
float const* ptr_dPsum;
StrideLSE const stride_dPsum;
float const softmax_scale;
float const softmax_scale_log2;
int num_batch;
int* dq_semaphore;
int const* cu_seqlens_q = nullptr;
int const* cu_seqlens_k = nullptr;
int const* seqused_q = nullptr;
int const* seqused_k = nullptr;
int window_size_left;
int window_size_right;
};
static Params
to_underlying_arguments(Arguments const& args) {
Tensor mQ = make_tensor(make_gmem_ptr(args.ptr_Q), args.shape_Q, args.stride_Q);
TMA_QdO tma_load_Q = make_tma_copy(
GmemTiledCopyQdO{},
mQ,
SmemLayoutQ{}(_, _, _0{}),
select<0, 2>(TileShape_MNK{}),
size<1>(ClusterShape{})); // mcast along N mode for this M load, if any
Tensor mdO = make_tensor(make_gmem_ptr(args.ptr_dO), args.shape_Q, args.stride_dO);
TMA_QdO tma_load_dO = make_tma_copy(
GmemTiledCopyQdO{},
mdO,
SmemLayoutdO{}(_, _, _0{}),
select<0, 2>(TileShape_MNK{}),
size<1>(ClusterShape{})); // mcast along N mode for this M load, if any
Tensor mK = make_tensor(make_gmem_ptr(args.ptr_K), args.shape_K, args.stride_K);
TMA_K tma_load_K = make_tma_copy(
GmemTiledCopyKV{},
mK,
SmemLayoutK{},
select<1, 2>(TileShape_MNK{}),
_1{}); // no mcast for KV
Tensor mV = make_tensor(make_gmem_ptr(args.ptr_V), args.shape_K, args.stride_V);
TMA_V tma_load_V = make_tma_copy(
GmemTiledCopyKV{},
mV,
SmemLayoutV{},
select<1, 2>(TileShape_MNK{}),
_1{}); // no mcast for KV
Tensor mdQaccum = make_tensor(make_gmem_ptr(args.ptr_dQaccum), args.shape_dQaccum, args.stride_dQaccum);
TMA_add_dQ tma_add_dQ = make_tma_copy(
GmemTiledCopydQaccum{},
mdQaccum,
SmemLayoutdQaccumTMA{},
TileShape_dQaccum{},
_1{}); // no mcast for dQaccum
Tensor mLSE = make_tensor(make_gmem_ptr(args.ptr_LSE_log2), args.shape_LSE, args.stride_LSE_log2);
TMA_LSE tma_load_LSE = make_tma_copy(
GmemTiledCopyLSE{},
mLSE,
select<0>(SmemLayoutLSE{}),
select<0>(TileShape_MNK{}),
_1{}); // no mcast for LSE
Tensor mdPsum = make_tensor(make_gmem_ptr(args.ptr_dPsum), args.shape_LSE, args.stride_dPsum);
TMA_LSE tma_load_dPsum = make_tma_copy(
GmemTiledCopyLSE{},
mdPsum,
select<0>(SmemLayoutLSE{}),
select<0>(TileShape_MNK{}),
_1{}); // no mcast for dPsum
if constexpr (Deterministic) { assert(args.dq_semaphore != nullptr); }
return {args.shape_Q, args.shape_K, args.shape_dQaccum,
cutlass::FastDivmod(cute::ceil_div(get<2>(args.shape_Q), get<2>(args.shape_K))),
tma_load_Q, tma_load_dO, tma_load_K, tma_load_V, tma_add_dQ, tma_load_LSE, tma_load_dPsum,
args.ptr_LSE_log2, args.shape_LSE, args.stride_LSE_log2, args.ptr_dPsum, args.stride_dPsum,
args.softmax_scale, float(args.softmax_scale * M_LOG2E),
args.num_batch, args.dq_semaphore, args.cu_seqlens_q, args.cu_seqlens_k,
args.seqused_k, args.seqused_v, args.window_size_left, args.window_size_right};
}
/// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
CUTLASS_DEVICE
static void prefetch_tma_descriptors(Params const& params) {
cute::prefetch_tma_descriptor(params.tma_load_Q.get_tma_descriptor());
cute::prefetch_tma_descriptor(params.tma_load_dO.get_tma_descriptor());
cute::prefetch_tma_descriptor(params.tma_load_K.get_tma_descriptor());
cute::prefetch_tma_descriptor(params.tma_load_V.get_tma_descriptor());
cute::prefetch_tma_descriptor(params.tma_load_LSE.get_tma_descriptor());
cute::prefetch_tma_descriptor(params.tma_load_dPsum.get_tma_descriptor());
cute::prefetch_tma_descriptor(params.tma_add_dQ.get_tma_descriptor());
}
CUTLASS_DEVICE
int get_seqlen_q(Params const& params, int bidb) {
if constexpr (!Varlen) {
return get<0>(params.shape_Q);
} else {
return params.cu_seqlens_q == nullptr
? get<0>(params.shape_Q)
: (params.seqused_q
? params.seqused_q[bidb]
: params.cu_seqlens_q[bidb + 1] - params.cu_seqlens_q[bidb]
);
}
}
CUTLASS_DEVICE
int get_seqlen_k(Params const& params, int bidb) {
if constexpr (!Varlen) {
return get<0>(params.shape_K);
} else {
return params.cu_seqlens_k == nullptr
? get<0>(params.shape_K)
: (params.seqused_k
? params.seqused_k[bidb]
: params.cu_seqlens_k[bidb + 1] - params.cu_seqlens_k[bidb]
);
}
}
CUTLASS_DEVICE
int get_m_block_min(Params const& params, int n_block, int bidb) {
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
if constexpr (Is_causal || Is_local) {
int const seqlen_q = get_seqlen_q(params, bidb);
int const seqlen_k = get_seqlen_k(params, bidb);
return std::max(0, (n_block * kBlockN + seqlen_q - seqlen_k - params.window_size_right) / kBlockM);
} else {
return 0;
}
}
CUTLASS_DEVICE
int get_m_block_max(Params const& params, int n_block, int bidb) {
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
int const seqlen_q = get_seqlen_q(params, bidb);
int const seqlen_k = get_seqlen_k(params, bidb);
int m_block_max = cute::ceil_div(seqlen_q, kBlockM);
if constexpr (Is_local) {
return std::min(m_block_max, cute::ceil_div((n_block + 1) * kBlockN + seqlen_q - seqlen_k + params.window_size_left, kBlockM));
} else {
return m_block_max;
}
}
template <typename SchedulerPrefetch, typename SharedStorage>
CUTLASS_DEVICE void
load(Params const& params,
MainloopPipeline pipeline_q,
MainloopPipeline pipeline_do,
PipelineState& smem_pipe_write,
SharedStorage &shared_storage,
SchedulerPrefetch const& scheduler_prefetch,
cute::tuple<int32_t, int32_t, int32_t> block_coord,
int work_idx
) {
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_q.data()), SmemLayoutQ{});
Tensor sdO = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_do.data()), SmemLayoutdO{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_v.data()), SmemLayoutV{});
Tensor sLSE = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_lse.data()), SmemLayoutLSE{});
Tensor sdPsum = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_dpsum.data()), SmemLayoutLSE{});
auto [n_block, bidh, bidb] = block_coord;
int bidh_kv = params.qhead_per_khead_divmod.divide(bidh);
// Prepare the TMA loads
uint32_t block_rank_in_cluster = cute::block_rank_in_cluster();
constexpr uint32_t cluster_shape_x = get<0>(ClusterShape());
uint2 cluster_local_block_id = {block_rank_in_cluster % cluster_shape_x, block_rank_in_cluster / cluster_shape_x};
bool const is_varlen_q = Varlen && params.cu_seqlens_q != nullptr;
bool const is_varlen_k = Varlen && params.cu_seqlens_k != nullptr;
Tensor mQ = params.tma_load_Q.get_tma_tensor(params.shape_Q)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor mdO = params.tma_load_dO.get_tma_tensor(params.shape_Q)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor mK = params.tma_load_K.get_tma_tensor(params.shape_K)(_, _, bidh_kv, !is_varlen_k ? bidb : 0);
Tensor mV = params.tma_load_V.get_tma_tensor(params.shape_K)(_, _, bidh_kv, !is_varlen_k ? bidb : 0);
Tensor mLSE = params.tma_load_LSE.get_tma_tensor(params.shape_LSE)(_, bidh, !is_varlen_q ? bidb : 0);
Tensor mdPsum = params.tma_load_dPsum.get_tma_tensor(params.shape_LSE)(_, bidh, !is_varlen_q ? bidb : 0);
int const offset_q = !is_varlen_q ? 0 : params.cu_seqlens_q[bidb];
int const offset_k = !is_varlen_k ? 0 : params.cu_seqlens_k[bidb];
int const offset_padded = !is_varlen_q ? 0 : (params.cu_seqlens_q[bidb] + bidb * 128) / 128 * 128;
Tensor gQ = local_tile(domain_offset(make_coord(offset_q, _0{}), mQ), select<0, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (M, K, _)
Tensor gdO = local_tile(domain_offset(make_coord(offset_q, _0{}), mdO), select<0, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (M, K, _)
Tensor gK = local_tile(domain_offset(make_coord(offset_k, _0{}), mK), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{})); // (N, K)
Tensor gV = local_tile(domain_offset(make_coord(offset_k, _0{}), mV), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{})); // (N, K)
Tensor gLSE = local_tile(domain_offset(make_coord(offset_padded), mLSE), select<0>(TileShape_MNK{}), make_coord(_)); // (M, _)
Tensor gdPsum = local_tile(domain_offset(make_coord(offset_padded), mdPsum), select<0>(TileShape_MNK{}), make_coord(_)); // (M, _)
Tensor sK_x = make_tensor(sK.data(), make_layout(sK.layout(), Layout<_1>{}));
Tensor gK_x = make_tensor(gK.data(), make_layout(gK.layout(), Layout<_1>{}));
Tensor sV_x = make_tensor(sV.data(), make_layout(sV.layout(), Layout<_1>{}));
Tensor gV_x = make_tensor(gV.data(), make_layout(gV.layout(), Layout<_1>{}));
auto [tQgQ, tQsQ] = tma_partition(params.tma_load_Q, block_rank_in_cluster, Layout<ClusterShape>{},
group_modes<0, 2>(sQ), group_modes<0, 2>(gQ)); // (TMA, k), (TMA, PIPE)
auto [tdOgdO, tdOsdO] = tma_partition(params.tma_load_dO, block_rank_in_cluster, Layout<ClusterShape>{},
group_modes<0, 2>(sdO), group_modes<0, 2>(gdO)); // (TMA, k), (TMA, PIPE)
auto [tKgK, tKsK] = tma_partition(params.tma_load_K, _0{}, Layout<_1>{},
group_modes<0, 2>(sK_x), group_modes<0, 2>(gK_x)); // (TMA), (TMA)
auto [tVgV, tVsV] = tma_partition(params.tma_load_V, _0{}, Layout<_1>{},
group_modes<0, 2>(sV_x), group_modes<0, 2>(gV_x)); // (TMA), (TMA)
auto [tLSEgLSE, tLSEsLSE] = tma_partition(params.tma_load_LSE, _0{}, Layout<_1>{},
sLSE, gLSE); // (TMA, k), (TMA, PIPE)
auto [tLSEgdPsum, tLSEsdPsum] = tma_partition(params.tma_load_dPsum, _0{}, Layout<_1>{},
sdPsum, gdPsum); // (TMA, k), (TMA, PIPE)
uint16_t mcast_mask_qdo = 0;
if constexpr (cute::is_same_v<GmemTiledCopyQdO, SM90_TMA_LOAD_MULTICAST>) {
auto block_layout = Layout<ClusterShape>{}; // (m,n) -> block_id
for (int n = 0; n < size<1>(block_layout); ++n) {
mcast_mask_qdo |= (uint16_t(1) << block_layout(n, cluster_local_block_id.x, _0{}));
}
}
int m_block_max = get_m_block_max(params, n_block, bidb);
int m_block_min = get_m_block_min(params, n_block, bidb);
int m_block = m_block_min;
int lane_predicate = cute::elect_one_sync();
// // Wait for the MMA warpgroups to say that smem_q is ready
// cutlass::arch::NamedBarrier::sync(NumMmaThreads + cutlass::NumThreadsPerWarp, static_cast<int>(BwdNamedBarriers::QueryEmpty) /*id*/);
if (lane_predicate) {
// Copy K tile and V tile from GMEM to SMEM.
shared_storage.barrier_KV.arrive_and_expect_tx(TmaTransactionBytesK + TmaTransactionBytesV);
copy(params.tma_load_K.with(reinterpret_cast<cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.barrier_KV), 0 /*mcast_mask*/), tKgK, tKsK);
copy(params.tma_load_V.with(reinterpret_cast<cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.barrier_KV), 0 /*mcast_mask*/), tVgV, tVsV);
pipeline_q.producer_acquire(smem_pipe_write);
copy(params.tma_load_Q.with(*pipeline_q.producer_get_barrier(smem_pipe_write), mcast_mask_qdo), tQgQ(_, m_block), tQsQ(_, smem_pipe_write.index()));
copy(params.tma_load_LSE.with(*pipeline_q.producer_get_barrier(smem_pipe_write), 0), tLSEgLSE(_, m_block), tLSEsLSE(_, smem_pipe_write.index()));
#pragma unroll 2
for (; m_block < m_block_max - 1; ++m_block) {
pipeline_do.producer_acquire(smem_pipe_write);
copy(params.tma_load_dO.with(*pipeline_do.producer_get_barrier(smem_pipe_write), mcast_mask_qdo), tdOgdO(_, m_block), tdOsdO(_, smem_pipe_write.index()));
copy(params.tma_load_dPsum.with(*pipeline_do.producer_get_barrier(smem_pipe_write), 0), tLSEgdPsum(_, m_block), tLSEsdPsum(_, smem_pipe_write.index()));
++smem_pipe_write;
pipeline_q.producer_acquire(smem_pipe_write);
copy(params.tma_load_Q.with(*pipeline_q.producer_get_barrier(smem_pipe_write), mcast_mask_qdo), tQgQ(_, m_block + 1), tQsQ(_, smem_pipe_write.index()));
copy(params.tma_load_LSE.with(*pipeline_q.producer_get_barrier(smem_pipe_write), 0), tLSEgLSE(_, m_block + 1), tLSEsLSE(_, smem_pipe_write.index()));
}
}
scheduler_prefetch();
if (lane_predicate) {
pipeline_do.producer_acquire(smem_pipe_write);
copy(params.tma_load_dO.with(*pipeline_do.producer_get_barrier(smem_pipe_write), mcast_mask_qdo), tdOgdO(_, m_block), tdOsdO(_, smem_pipe_write.index()));
copy(params.tma_load_dPsum.with(*pipeline_do.producer_get_barrier(smem_pipe_write), 0), tLSEgdPsum(_, m_block), tLSEsdPsum(_, smem_pipe_write.index()));
++smem_pipe_write;
}
}
/// Perform a Producer Epilogue to prevent early exit of blocks in a Cluster
CUTLASS_DEVICE void
load_tail(MainloopPipeline pipeline_q, MainloopPipeline pipeline_do,
PipelineState& smem_pipe_write) {
// Need to copy since pipeline_q.producer_tail(smem_pipe_write) will increment smem_pipe_write
PipelineState smem_pipe_write_do = smem_pipe_write;
int lane_predicate = cute::elect_one_sync();
// Issue the epilogue waits
if (lane_predicate) {
/* This helps avoid early exit of blocks in Cluster
* Waits for all stages to either be released (all Consumer UNLOCKs), or if the stage was never used
* then would just be acquired since the phase was still inverted from make_producer_start_state
*/
pipeline_q.producer_tail(smem_pipe_write);
pipeline_do.producer_tail(smem_pipe_write_do);
}
}
template <typename SharedStorage>
CUTLASS_DEVICE void
store_dq(Params const& params,
SharedStorage &shared_storage,
cute::tuple<int32_t, int32_t, int32_t> block_coord
) {
Tensor sdQ = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_dqacc.data()), SmemLayoutdQaccumTMA{});
Tensor sdQnoswizzle = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_dqacc.data()), SmemLayoutdQaccumTMANoSwizzle{});
auto [n_block, bidh, bidb] = block_coord;
bool const is_varlen_q = Varlen && params.cu_seqlens_q != nullptr;
// We reshaped dQaccum to have last dimension 32, so the offset needs to be multiplied by kHeadDim / 32
int const offset_padded = !is_varlen_q ? 0 : ((params.cu_seqlens_q[bidb] + bidb * 128) / 128 * 128) * (kHeadDim / ElemsPerRowTMA);
// Prepare the TMA loads
Tensor mdQaccum = params.tma_add_dQ.get_tma_tensor(params.shape_dQaccum)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor gdQaccum = local_tile(domain_offset(make_coord(offset_padded, _0{}), mdQaccum), TileShape_dQaccum{}, make_coord(_, _0{})); // (M, K, _)
auto block_tma_dQ = params.tma_add_dQ.get_slice(_0{});
Tensor tdQgdQ = block_tma_dQ.partition_D(gdQaccum); // (TMA, TMA_M, TMA_K)
Tensor tdQsdQ = block_tma_dQ.partition_S(sdQ); // (TMA, TMA_M, TMA_K)
int m_block_max = get_m_block_max(params, n_block, bidb);
int m_block_min = get_m_block_min(params, n_block, bidb);
int m_block = m_block_min;
int const num_batch = params.num_batch;
int const num_head = get<2>(params.shape_Q);
int *lock_ptr = !Deterministic ? nullptr : params.dq_semaphore + bidb * num_head + bidh;
using Barrier = cutlass::GenericBarrier<cutlass::detail::SyncwarpSync>;
int lane_predicate = cute::elect_one_sync();
#pragma unroll 2
for (; m_block < m_block_max; ++m_block) {
if constexpr (Deterministic) {
Barrier::wait_eq(lock_ptr, threadIdx.x % cutlass::NumThreadsPerWarp, m_block * num_batch * num_head, n_block);
}
cutlass::arch::NamedBarrier::sync(kNThreadsdQ + cutlass::NumThreadsPerWarp, static_cast<int>(BwdNamedBarriers::dQFull) /*id*/); // sdQ full, to be written to gmem
if (lane_predicate) {
cute::copy(params.tma_add_dQ, tdQsdQ, tdQgdQ(_, _, _, m_block));
tma_store_arrive();
}
tma_store_wait<0>();
if constexpr (Deterministic) {
Barrier::arrive_inc(lock_ptr, threadIdx.x % cutlass::NumThreadsPerWarp, m_block * num_batch * num_head);
}
cutlass::arch::NamedBarrier::arrive(kNThreadsdQ + cutlass::NumThreadsPerWarp, static_cast<int>(BwdNamedBarriers::dQEmpty) /*id*/); // sdQ empty, ready to be written to
}
if constexpr (Is_local && Deterministic) {
constexpr int kBlockM = get<0>(TileShape_MNK{});
int const seqlen_q = get_seqlen_q(params, bidb);
int const m_block_global_max = cute::ceil_div(seqlen_q, kBlockM);
#pragma unroll 2
for (; m_block < m_block_global_max; ++m_block) {
Barrier::arrive_inc(lock_ptr, threadIdx.x % cutlass::NumThreadsPerWarp, m_block * num_batch * num_head);
}
}
}
CUTLASS_DEVICE void
mma_init() {
// // Tell producer (warp 0) that smem_q is ready
// cutlass::arch::NamedBarrier::arrive(NumMmaThreads + cutlass::NumThreadsPerWarp, static_cast<int>(BwdNamedBarriers::QueryEmpty) /*id*/);
int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
if (cutlass::canonical_warp_group_idx() == 1 && warp_idx_in_warpgroup == 0) {
cutlass::arch::NamedBarrier::arrive(kNThreadsdQ + cutlass::NumThreadsPerWarp, static_cast<int>(BwdNamedBarriers::dQEmpty) /*id*/); // sdQ empty, ready to be written to
}
}
template <typename SharedStorage, typename FrgTensordKV>
CUTLASS_DEVICE void
mma(Params const& params,
MainloopPipeline pipeline_q,
MainloopPipeline pipeline_do,
PipelineState& smem_pipe_read,
FrgTensordKV& tdKrdK,
FrgTensordKV& tdVrdV,
int thread_idx,
int work_idx,
cute::tuple<int32_t, int32_t, int32_t> block_coord,
SharedStorage& shared_storage
) {
static_assert(is_rmem<FrgTensordKV>::value, "dK and dV tensor must be rmem resident.");
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_q.data()), SmemLayoutQ{});
Tensor sdO = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_do.data()), SmemLayoutdO{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_v.data()), SmemLayoutV{});
Tensor sQt = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_q.data()), SmemLayoutQt{});
Tensor sdOt = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_do.data()), SmemLayoutdOt{});
Tensor sKt = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_k.data()), SmemLayoutKt{});
Tensor sdS = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_ds.data()), SmemLayoutdS{});
Tensor sdSt = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_ds.data()), SmemLayoutdSt{});
Tensor sdQ = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_dqacc.data()), SmemLayoutdQaccum{});
Tensor sLSEMma = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_lse.data()), SmemLayoutLSEMma{});
Tensor sdPsumMma = make_tensor(make_smem_ptr(shared_storage.mainloop.smem_dpsum.data()), SmemLayoutLSEMma{});
static_assert(stride<0>(typename TiledMmaSdP::ALayout{}) == 0 and
stride<0>(typename TiledMmaSdP::BLayout{}) == 0 and
size<0>(typename TiledMmaSdP::ALayout{}) == cutlass::NumThreadsPerWarpGroup and
size<0>(typename TiledMmaSdP::BLayout{}) == cutlass::NumThreadsPerWarpGroup,
"Stride of the first mode must be 0 and the size of the mode must be NumThreadsPerWarpGroup");
constexpr int MmaWarpGroups = NumMmaThreads / cutlass::NumThreadsPerWarpGroup;
Layout warp_group_thread_layout = make_layout(make_shape(Int<MmaWarpGroups>{}),
make_stride(Int<cutlass::NumThreadsPerWarpGroup>{}));
Layout warp_group_thread_layout_dq = make_layout(make_shape(Int<NumdQWarpGroups>{}),
make_stride(Int<cutlass::NumThreadsPerWarpGroup>{}));
int warp_group_idx = __shfl_sync(0xFFFFFFFF, thread_idx / cutlass::NumThreadsPerWarpGroup, 0);
TiledMmaSdP tiled_mma_SdP;
TiledMmadKV tiled_mma_dKV;
TiledMmadQ tiled_mma_dQ;
static_assert(!dKV_swapAB);
auto wg_mma_SdP = tiled_mma_SdP.get_slice(warp_group_thread_layout(warp_group_idx));
auto thread_mma_SdP = tiled_mma_SdP.get_thread_slice(thread_idx);
auto wg_mma_dKV = tiled_mma_dKV.get_slice(warp_group_thread_layout(warp_group_idx));
auto wg_mma_dQ = tiled_mma_dQ.get_slice(!Varlen ? warp_group_thread_layout_dq(NumdQWarpGroups == 2 ? warp_group_idx : 0) : thread_idx);
// auto wg_mma_dQ = tiled_mma_dQ.get_thread_slice(thread_idx);
auto smem_tiled_copy_PdS = make_tiled_copy_C(SmemCopyAtomPdS{}, tiled_mma_SdP);
auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(thread_idx);
Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdSt); // ((Atom,AtomNum),PIPE_M,PIPE_N)
R2STiledCopydQaccum r2s_tiled_copy_dQaccum;
// auto r2s_thr_copy_dQaccum = r2s_tiled_copy_dQaccum.get_thread_slice(thread_idx);
auto r2s_thr_copy_dQaccum = r2s_tiled_copy_dQaccum.get_thread_slice(NumdQWarpGroups == 2 ? thread_idx : thread_idx % cutlass::NumThreadsPerWarpGroup);
Tensor tdQsdQaccum = r2s_thr_copy_dQaccum.partition_D(sdQ);
// Allocate "fragments/descriptors"
Tensor tSrQ = wg_mma_SdP.partition_fragment_B(sQ);
Tensor tSrK = wg_mma_SdP.partition_fragment_A(sK);
Tensor tdPrdO = wg_mma_SdP.partition_fragment_B(sdO);
Tensor tdPrV = wg_mma_SdP.partition_fragment_A(sV);
Tensor tdVrdO = wg_mma_dKV.partition_fragment_B(sdOt);
Tensor tdKrQ = wg_mma_dKV.partition_fragment_B(sQt);
int n_block = get<0>(block_coord);
int bidh = get<1>(block_coord);
int bidb = get<2>(block_coord);
int const seqlen_q = get_seqlen_q(params, bidb);
int const seqlen_k = get_seqlen_k(params, bidb);
int m_block_max = get_m_block_max(params, n_block, bidb);
int m_block_min = get_m_block_min(params, n_block, bidb);
int m_block = m_block_min;
// thread_mma_SdP.partition_C(sLSEMma) has shape ((2, 2, V), MMA_M, MMA_N, PIPE), we only take the row indices.
Tensor tLSEsLSE = thread_mma_SdP.partition_C(sLSEMma)(make_coord(_, _0{}, _), _0{}, _0{}, _); // (2, V, PIPE)
Tensor tLSEsdPsum = thread_mma_SdP.partition_C(sdPsumMma)(make_coord(_, _0{}, _), _0{}, _0{}, _);
clear(tdKrdK);
clear(tdVrdV);
// tiled_mma_dKV.accumulate_ = GMMA::ScaleOut::Zero;
cutlass::ConsumerToken barrier_token = static_cast<cutlass::BarrierStatus>(shared_storage.barrier_KV.try_wait(work_idx % 2));
if (barrier_token == cutlass::BarrierStatus::WaitAgain) { shared_storage.barrier_KV.wait(work_idx % 2); }
auto consumer_wait = [](auto& pipeline, auto& smem_pipe_read) {
auto barrier_token = pipeline.consumer_try_wait(smem_pipe_read);
pipeline.consumer_wait(smem_pipe_read, barrier_token);
};
auto compute_dQ = [&]() {
static_assert(!Mma_dQ_is_RS);
// SMEM fence to make sure sP is written before it's read by WGMMA
cutlass::arch::fence_view_async_shared();
cutlass::arch::NamedBarrier::sync(kNThreadsdQ + cutlass::NumThreadsPerWarp, static_cast<int>(BwdNamedBarriers::dQEmpty) /*id*/); // sdQ empty, ready to be written to
Tensor tdQrdQ = partition_fragment_C(tiled_mma_dQ, select<!dQ_swapAB ? 0 : 2, !dQ_swapAB ? 2 : 0>(TileShape_MNK{}));
if constexpr (!dQ_swapAB) {
Tensor tdQrdS = wg_mma_dQ.partition_fragment_A(sdS);
Tensor tdQrK = wg_mma_dQ.partition_fragment_B(sKt);
flash::gemm</*zero_init=*/true, /*wg_wait=*/1>(tiled_mma_dQ, tdQrdS(_, _, _, smem_pipe_read.index()), tdQrK, tdQrdQ);
} else {
Tensor tdQrdS = wg_mma_dQ.partition_fragment_B(sdS);
Tensor tdQrK = wg_mma_dQ.partition_fragment_A(sKt);
flash::gemm</*zero_init=*/true, /*wg_wait=*/1>(tiled_mma_dQ, tdQrK, tdQrdS(_, _, _, smem_pipe_read.index()), tdQrdQ);
}
pipeline_q.consumer_release(smem_pipe_read); // release Q
warpgroup_wait<0>();
Tensor taccdQrdQ = r2s_thr_copy_dQaccum.retile_S(tdQrdQ); // ((Atom,AtomNum), MMA_M, MMA_N)
cute::copy(r2s_tiled_copy_dQaccum, taccdQrdQ, tdQsdQaccum);
cutlass::arch::fence_view_async_shared();
cutlass::arch::NamedBarrier::arrive(kNThreadsdQ + cutlass::NumThreadsPerWarp, static_cast<int>(BwdNamedBarriers::dQFull) /*id*/); // sdQ full, to be written to gmem
};
// We have separate iterations with causal masking. Not necessary for hdim 128 but for hdim 64
// this helps quite a bit to not have to do causal masking for most of the iterations.
if constexpr (Is_causal) {
static constexpr int n_masking_steps = cute::ceil_div(kBlockN, kBlockM) + 1;
CUTLASS_PRAGMA_NO_UNROLL
for (; m_block < std::min(m_block_max, m_block_min + n_masking_steps); ++m_block) {
Tensor tSrS = partition_fragment_C(tiled_mma_SdP, select<1, 0>(TileShape_MNK{}));
pipeline_q.consumer_wait(smem_pipe_read);
flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma_SdP, tSrK, tSrQ(_, _, _, smem_pipe_read.index()), tSrS);
Tensor tLSErLSE = make_fragment_like(tLSEsLSE(_, _, _0{}));
cute::copy(tLSEsLSE(_, _, smem_pipe_read.index()), tLSErLSE);
Tensor tdPrdP = partition_fragment_C(tiled_mma_SdP, select<1, 0>(TileShape_MNK{}));
pipeline_do.consumer_wait(smem_pipe_read);
flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma_SdP, tdPrV, tdPrdO(_, _, _, smem_pipe_read.index()), tdPrdP);
warpgroup_wait<1>();
Tensor cS = cute::make_identity_tensor(select<1, 0>(TileShape_MNK{}));
Tensor taccScS = thread_mma_SdP.partition_C(cS);
int causal_row_offset = 1 + seqlen_k - n_block * kBlockN - seqlen_q + m_block * kBlockM;
#pragma unroll
for (int i = 0; i < size(tSrS); ++i) {
if (int(get<0>(taccScS(i))) >=
std::min(int(get<1>(taccScS(i))) + causal_row_offset, seqlen_k - n_block * kBlockN)) {
tSrS(i) = -INFINITY;
}
}
// Reshape tSrS from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
Tensor scores = make_tensor(tSrS.data(), flash::convert_layout_acc_transposed_rowcol(tSrS.layout()));
flash::scale_apply_exp2</*Scale_max=*/false, /*Check_inf=*/false>(scores, group_modes<0, 2>(tLSErLSE), params.softmax_scale_log2);
Tensor tLSErdPsum = make_fragment_like(tLSEsdPsum(_, _, _0{}));
cute::copy(tLSEsdPsum(_, _, smem_pipe_read.index()), tLSErdPsum);
// Convert scores from fp32 to fp16/bf16
Tensor rP = flash::convert_type<Element>(tSrS);
warpgroup_wait<0>();
// Reshape tdPrdP from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
Tensor dS = make_tensor(tdPrdP.data(), scores.layout());
for (int mi = 0; mi < size<0>(dS); ++mi) {
#pragma unroll
for (int ni = 0; ni < size<1>(dS); ++ni) { dS(mi, ni) = scores(mi, ni) * (dS(mi, ni) - tLSErdPsum(mi)); }
}
Tensor rdS = flash::convert_type<Element>(tdPrdP);
// Because of double buffering on dS, we don't need to sync here.
// Otherwise we might have WG1 writing to dS before WG2 is done reading from it during MmadQ.
// But because both WGs have to sync at the end of the loop and double buffering, this race condition
// is not possible.
Tensor tdSadS = smem_thr_copy_PdS.retile_S(rdS); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS(_, _, _, smem_pipe_read.index()));
Tensor tdVrP = make_tensor(rP.data(), convert_layout_acc_Aregs<TiledMmadKV>(tSrS.layout()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma_dKV, tdVrP, tdVrdO(_, _, _, smem_pipe_read.index()), tdVrdV);
Tensor tdKrdS = make_tensor(rdS.data(), convert_layout_acc_Aregs<TiledMmadKV>(tdPrdP.layout()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/1>(tiled_mma_dKV, tdKrdS, tdKrQ(_, _, _, smem_pipe_read.index()), tdKrdK);
pipeline_do.consumer_release(smem_pipe_read); // release dO
compute_dQ();
++smem_pipe_read;
}
}
CUTLASS_PRAGMA_NO_UNROLL
for (; m_block < m_block_max; ++m_block) {
Tensor tSrS = partition_fragment_C(tiled_mma_SdP, select<1, 0>(TileShape_MNK{}));
pipeline_q.consumer_wait(smem_pipe_read);
flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma_SdP, tSrK, tSrQ(_, _, _, smem_pipe_read.index()), tSrS);
Tensor tLSErLSE = make_fragment_like(tLSEsLSE(_, _, _0{}));
cute::copy(tLSEsLSE(_, _, smem_pipe_read.index()), tLSErLSE);
Tensor tdPrdP = partition_fragment_C(tiled_mma_SdP, select<1, 0>(TileShape_MNK{}));
pipeline_do.consumer_wait(smem_pipe_read);
flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma_SdP, tdPrV, tdPrdO(_, _, _, smem_pipe_read.index()), tdPrdP);
warpgroup_wait<1>();
Tensor cS = cute::make_identity_tensor(select<1, 0>(TileShape_MNK{}));
Tensor taccScS = thread_mma_SdP.partition_C(cS);
if constexpr (!Is_local) {
#pragma unroll
for (int i = 0; i < size(tSrS); ++i) {
if (int(get<0>(taccScS(i))) >= int(seqlen_k - n_block * kBlockN)) { tSrS(i) = -INFINITY; }
}
} else {
int local_row_offset_right = 1 + seqlen_k - n_block * kBlockN - seqlen_q + m_block * kBlockM + params.window_size_right;
int local_row_offset_left = seqlen_k - n_block * kBlockN - seqlen_q + m_block * kBlockM - params.window_size_left;
#pragma unroll
for (int i = 0; i < size(tSrS); ++i) {
if ((int(get<0>(taccScS(i))) >= std::min(int(get<1>(taccScS(i))) + local_row_offset_right, seqlen_k - n_block * kBlockN)) ||
(int(get<0>(taccScS(i))) < std::max(int(get<1>(taccScS(i))) + local_row_offset_left, 0))) {
tSrS(i) = -INFINITY;
}
}
}
// Reshape tSrS from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
Tensor scores = make_tensor(tSrS.data(), flash::convert_layout_acc_transposed_rowcol(tSrS.layout()));
// if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(tLSErLSE); }
// if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(scores); }
flash::scale_apply_exp2</*Scale_max=*/false, /*Check_inf=*/false>(scores, group_modes<0, 2>(tLSErLSE), params.softmax_scale_log2);
// if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(scores); }
Tensor tLSErdPsum = make_fragment_like(tLSEsdPsum(_, _, _0{}));
cute::copy(tLSEsdPsum(_, _, smem_pipe_read.index()), tLSErdPsum);
// Convert scores from fp32 to fp16/bf16
Tensor rP = flash::convert_type<Element>(tSrS);
warpgroup_wait<0>();
// Reshape tdPrdP from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
Tensor dS = make_tensor(tdPrdP.data(), scores.layout());
#pragma unroll
for (int mi = 0; mi < size<0>(dS); ++mi) {
#pragma unroll
for (int ni = 0; ni < size<1>(dS); ++ni) { dS(mi, ni) = scores(mi, ni) * (dS(mi, ni) - tLSErdPsum(mi)); }
}
// if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(dS); }
Tensor rdS = flash::convert_type<Element>(tdPrdP);
Tensor tdSadS = smem_thr_copy_PdS.retile_S(rdS); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS(_, _, _, smem_pipe_read.index()));
Tensor tdVrP = make_tensor(rP.data(), convert_layout_acc_Aregs<TiledMmadKV>(tSrS.layout()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma_dKV, tdVrP, tdVrdO(_, _, _, smem_pipe_read.index()), tdVrdV);
Tensor tdKrdS = make_tensor(rdS.data(), convert_layout_acc_Aregs<TiledMmadKV>(tdPrdP.layout()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/1>(tiled_mma_dKV, tdKrdS, tdKrQ(_, _, _, smem_pipe_read.index()), tdKrdK);
pipeline_do.consumer_release(smem_pipe_read); // release dO
compute_dQ();
++smem_pipe_read;
}
// if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(tdVrdV); }
#pragma unroll
for (int i = 0; i < size(tdKrdK); ++i) { tdKrdK(i) *= params.softmax_scale; }
}
};
} // namespace flash