-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
717 lines (634 loc) · 27.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
'''
Usage:
quote_detection.py <model-name> -t <corpus-type> -c <corpus-path> -e <embedding-path>
Options:
-t Corpus type (either parc, rwg, or stop)
-c Path to corpus
-e Path to embeddings file
'''
import random
from docopt import docopt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn.parameter import Parameter
import numpy as np
from evaluate import evaluate, report
from progressify import progressify
class LSTMSeq2Seq(nn.Module):
def __init__(self, embedding_dim, hidden_dim, n_labels, layers=2, bidirectional=True):
super().__init__()
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.n_labels = n_labels
self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=layers, bidirectional=bidirectional, dropout=0.5, batch_first=True)
self.linear = nn.Linear(hidden_dim * 2 if bidirectional else hidden_dim, n_labels)
def forward(self, x):
x = self.lstm(x)[0]
if isinstance(x, nn.utils.rnn.PackedSequence):
data = self.linear(x.data)
return nn.utils.rnn.PackedSequence(data, x.batch_sizes)
else:
x = self.linear(x)
return x
class SelfAttentionLayer(nn.Module):
def __init__(self, d_x, d_k, d_v):
super().__init__()
self.d_x = d_x
self.d_k = d_k
self.d_v = d_v
self.w_q = nn.Linear(d_x, d_k)
self.w_k = nn.Linear(d_x, d_k)
self.w_v = nn.Linear(d_x, d_v)
def forward(self, x):
# x: float[batch, sequence_length, d_x]
Q = self.w_q(x)
# Q: float[batch, sequence_length, d_k]
K = self.w_k(x)
# K: float[batch, sequence_length, d_k]
V = self.w_v(x)
# V: float[batch, sequence_length, d_v]
logits = torch.bmm(K, V.permute(0, 2, 1)) / np.sqrt(self.d_k)
# logits float[batch, sequence_length, sequence_length]
return torch.bmm(torch.softmax(logits, dim=-1), V)
# return float[batch, sequence_length, d_v]
class MultiHeadedAttentionLayer(nn.Module):
def __init__(self, d_x, n_heads):
super().__init__()
assert d_x % n_heads == 0
self.n_heads = n_heads
self.heads = [
SelfAttentionLayer(d_x, d_x // n_heads, d_x // n_heads)
for _ in range(n_heads)
]
def forward(self, x):
# x: float[batch, sequence_length, d_x]
return torch.cat([
head(x) for head in self.heads
], dim=-1)
class TransformerLayer(nn.Module):
def __init__(self, d_x, n_heads, activation=F.relu):
super().__init__()
self.d_x = d_x
self.n_heads = n_heads
self.activation = activation
self.attention = MultiHeadedAttentionLayer(d_x, n_heads)
self.linear = nn.Linear(d_x, d_x)
self.ln1 = nn.LayerNorm([d_x])
self.ln2 = nn.LayerNorm([d_x])
self.dropout = nn.Dropout(p=0.1)
def forward(self, x):
# x: float[batch, sequence, d_x]
x_attn = self.dropout(self.attention(x))
# x_attn: float[batch, sequence, d_x]
x = self.ln1(x + x_attn)
x_ff = self.dropout(self.activation(self.linear(x)))
x = self.ln2(x + x_ff)
return x
class TransformerSeq2Seq(nn.Module):
def __init__(self, d_x, n_layers, n_heads, d_out, pos_encode=False):
super().__init__()
self.d_x = d_x
self.d_out = d_out
self.n_heads = n_heads
self.pos_encode = pos_encode
self.layers = [TransformerLayer(d_x, n_heads) for _ in range(n_layers)]
self.out = nn.Linear(d_x, d_out)
self.dropout = nn.Dropout(p=0.1)
def _pos_encode(self, x):
# x: float[batch, sequence_length, n_dims]
batch, sequence_length, n_dims = x.shape
positions = torch.arange(sequence_length, dtype=torch.float)
# positions: float[sequence_length]
frequencies = 10000 ** (-torch.arange(n_dims/2, dtype=torch.float) / (n_dims/2))
# frequencies: float[n_dims / 2]
coss = torch.cos(torch.ger(positions, frequencies))
sins = torch.sin(torch.ger(positions, frequencies))
pes = torch.cat([coss, sins], -1)
# pes: float[sequence_length, n_dims]
return self.dropout(x + pes)
def forward(self, x):
was_packed = False
if isinstance(x, nn.utils.rnn.PackedSequence):
was_packed = True
x, lengths = nn.utils.rnn.pad_packed_sequence(x, batch_first=True)
# x float:[batch, sequence_length, d_x]
if self.pos_encode:
x = self._pos_encode(x)
for layer in self.layers:
x = layer(x)
x = self.out(x)
if was_packed:
x = nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True)
return x
class ComposedSeq2Seq(nn.Module):
def __init__(self, dim, lstm_layers=2, transformer_layers=6):
super().__init__()
self.lstm = LSTMSeq2Seq(dim, dim, dim, layers=lstm_layers)
self.transformer = TransformerSeq2Seq(dim, transformer_layers, 8, dim)
def forward(self, x):
return self.lstm(self.transformer(x))
class IdentityLayer(nn.Module):
def forward(self, x):
return x
class LSTMCRF(nn.Module):
# only supports packedsequences of length 1...
def __init__(self, dim, n_tags, lstm_layers=2):
super().__init__()
self.lstm = LSTMSeq2Seq(dim, dim, dim, layers=lstm_layers)
self.crf = CRFLayer(dim, n_tags)
# hack so we can print these nicely
self.transitions = self.crf.transitions
def forward(self, x):
x = self.lstm(x)
if isinstance(x, nn.utils.rnn.PackedSequence):
return self.crf(x.data)
else:
return self.crf(x)
def neg_log_likelihood(self, x, tags):
x = self.lstm(x)
if isinstance(x, nn.utils.rnn.PackedSequence):
return self.crf.neg_log_likelihood(x.data, tags.data)
else:
return self.crf.neg_log_likelihood(x, tags)
class QuoteDetectionModel(nn.Module):
def __init__(
self,
n_features,
dim=300,
lam=1e-4,
encoder=None,
use_crf=False,
transformer=False,
sample_steps=1,
label_scheme='BE',
viterbi=False,
pipeline=True,
):
super().__init__()
self.n_features = n_features
self.dim = dim
self.lam = lam
self.use_crf = use_crf
self.sample_steps = sample_steps
self.label_scheme = label_scheme
self.viterbi = viterbi
self.pipeline = pipeline
self.embedding = nn.EmbeddingBag(n_features, dim, mode='sum')
self.roles = list(roles)
if encoder is None:
self.encoder = lambda x: x
elif encoder == 'transformer':
self.encoder = TransformerSeq2Seq(dim, 6, 10, dim, pos_encode=True)
if use_crf:
self.seq2seqs = nn.ModuleList()
self.crf_encoders = nn.ModuleList()
self.crfs = nn.ModuleList()
for role in self.roles:
if transformer:
self.seq2seqs.append(TransformerSeq2Seq(dim, 6, 10, dim, pos_encode=True))
else:
self.seq2seqs.append(LSTMSeq2Seq(dim, dim, dim, layers=2, bidirectional=True))
#self.crfs.append(CRFLayer(dim, 3))
self.crf_encoders.append(nn.Linear(dim, 3))
self.crfs.append(ConditionalRandomField(3))
else:
self.seq2seqs = nn.ModuleList()
self.outputs = nn.ModuleList()
for role in self.roles:
if transformer:
self.seq2seqs.append(TransformerSeq2Seq(dim, 6, 10, dim, pos_encode=True))
else:
self.seq2seqs.append(LSTMSeq2Seq(dim, dim, dim, layers=2, bidirectional=True))
self.outputs.append(nn.Linear(dim, 3))
self.tag_embeddings = Parameter(torch.Tensor(3, 3, dim))
nn.init.normal_(self.tag_embeddings)
def forward(self, x):
# x: long[batch_size, sequence_length, bag_size]
nn.init.zeros_(self.embedding.weight[0])
batch_size, sequence_length, bag_size = x.shape
embedded = self.embedding(x.view(-1, bag_size)).view(batch_size, sequence_length, self.dim)
# embedded: float[batch_size, sequence_length, self.dim]
embedded = self.encoder(embedded)
prediction_embeddings = torch.zeros_like(embedded)
if self.use_crf:
for step in range(self.sample_steps):
paths = []
for i, (seq2seq, crf_encoder, crf) in enumerate(zip(self.seq2seqs, self.crf_encoders, self.crfs)):
res = seq2seq(embedded + prediction_embeddings)
# res: float[batch_size, sequence_length, self.dim]
sequence_length = res.shape[1]
path, score = crf.viterbi_tags(crf_encoder(res).cpu(), torch.tensor([sequence_length], dtype=torch.int64).cpu())[0]
path = torch.tensor([path])
if self.pipeline:
prediction_embeddings = prediction_embeddings + F.embedding(path, self.tag_embeddings[i])
paths.append(path)
return torch.stack(paths, dim=1)
# return float:[batch_size, len(self.roles), sequence_length]
else:
for step in range(self.sample_steps):
paths = []
for i, (seq2seq, output) in enumerate(zip(self.seq2seqs, self.outputs)):
res = seq2seq(embedded + prediction_embeddings)
# res: float[batch_size, sequence_length, self.dim]
logits = output(res)
# logits: float[batch_size, sequence_length, 3]
if self.viterbi:
#breakpoint()
probs = torch.softmax(logits, dim=-1)
path = self.viterbi_sequence(probs)
else:
path = torch.argmax(logits, dim=-1)
if self.pipeline:
prediction_embeddings = prediction_embeddings + F.embedding(path, self.tag_embeddings[i])
paths.append(path)
return torch.stack(paths, dim=1)
# return float:[batch_size, len(self.roles), sequence_length]
def neg_log_likelihood(self, x, tags):
# x: long[batch_size, sequence_length, bag_size]
# tags: int[batch_size, len(self.roles), sequence_length]
nn.init.zeros_(self.embedding.weight[0])
batch_size, sequence_length, bag_size = x.shape
embedded = self.embedding(x.view(-1, bag_size)).view(batch_size, sequence_length, self.dim)
# embedded: float[batch_size, sequence_length, self.dim]
embedded = self.encoder(embedded)
nll = 0
prediction_embeddings = torch.zeros_like(embedded)
if self.use_crf:
for step in range(self.sample_steps):
for i, (seq2seq, crf_encoder, crf) in enumerate(zip(self.seq2seqs, self.crf_encoders, self.crfs)):
role_tags = tags[:,i,:]
res = seq2seq(embedded + prediction_embeddings)
nll -= torch.sum(crf(crf_encoder(res), role_tags))
if self.pipeline:
score, path = crf(res)
prediction_embeddings = prediction_embeddings + F.embedding(path, self.tag_embeddings[i])
return nll
else:
for step in range(self.sample_steps):
for i, (seq2seq, output) in enumerate(zip(self.seq2seqs, self.outputs)):
role_tags = tags[:,i,:]
# role_tags: long[batch_size, sequence_length]
res = seq2seq(embedded + prediction_embeddings)
# res: float[batch_size, sequence_length, self.dim]
logits = output(res)
# logits: float[batch_size, sequence_length, 3]
nll += F.cross_entropy(logits.view(-1, 3), role_tags.view(-1), reduction='sum')
path = torch.argmax(logits, dim=-1)
if self.pipeline:
if self.viterbi:
# It is too expensive to do the viterbi step during training I think
# instead, let's use gold-standard labels
# error propogation yada yada
prediction_embeddings = prediction_embeddings + F.embedding(role_tags, self.tag_embeddings[i])
else:
prediction_embeddings = prediction_embeddings + F.embedding(path, self.tag_embeddings[i])
return nll
def viterbi_sequence(self, probs):
if self.label_scheme == "BE":
#naive = [" BE"[m] for m in torch.argmax(probs, -1)]
paths = torch.zeros(probs.shape[:-1], dtype=torch.long)
inf = float('inf')
# OIB probabilities
for i, pi in enumerate(probs):
state_lps = [(0, -inf, -inf)]
for lp_, lpb, lpe in torch.log(pi):
state_lpb = max(state_lps[-1]) + lpb
state_lpi = max(state_lps[-1][1], state_lps[-1][2]) + lp_
state_lpo = max(
state_lps[-1][0] + lp_,
state_lps[-1][1] + lpe,
state_lps[-1][2] + lpe
)
state_lps.append((state_lpo, state_lpi, state_lpb))
#construct the most likely BIO sequence from back to front
bios = []
outside = True
for (lpo, lpi, lpb) in reversed(state_lps[1:]):
if outside:
if lpo > lpi and lpo > lpb:
bios.append('O')
elif lpb > lpo and lpb > lpi:
bios.append('B')
else:
bios.append('I')
outside = False
else:
if lpb > lpi:
bios.append('B')
outside = True
else:
bios.append('I')
bios.reverse()
outside = True
for j, bio in enumerate(bios):
if bio == 'B':
#final_labels.append('B')
paths[i,j] = 1
outside = False
elif bio == 'I':
#final_labels.append(' ')
paths[i,j] = 0
assert not outside
elif bio == 'O':
if not outside:
#final_labels.append('E')
paths[i,j] = 2
else:
#final_labels.append(' ')
paths[i,j] = 0
outside = True
return paths
def jointshuffle(l1, l2):
print("shuffling...")
zipped = list(zip(l1, l2))
random.shuffle(zipped)
c, d = zip(*zipped)
print("done shuffling")
return list(c), list(d)
def batchify(feats, labels, batch_size):
feats, labels = jointshuffle(feats, labels)
feats.sort(key=len)
labels.sort(key=lambda lab:lab.shape[1])
def encode_feats(*corpora):
seen_features = {None: 0}
encoded_corpora = []
for corpus in corpora:
encoded_corpus = []
for document in corpus:
bag_size = max([len(token) for token in document])
document_tensor = []
for token in document:
bag = []
for feature in token:
if feature not in seen_features:
seen_features[feature] = len(seen_features)
bag.append(seen_features[feature])
while len(bag) < bag_size:
bag.append(0)
document_tensor.append(bag)
document_tensor = torch.tensor(document_tensor, dtype=torch.long)
encoded_corpus.append(document_tensor)
encoded_corpora.append(encoded_corpus)
return encoded_corpora, seen_features
def encode_labels(*corpora, scheme='BE'):
if scheme == 'BE':
tags = ' BE'
elif scheme == 'BIO':
tags = 'OIB'
encoded_corpora = []
for corpus in corpora:
encoded_corpus = []
for document in corpus:
document_tensor = []
for role in roles:
role_tensor = []
for token in document:
role_tensor.append(tags.index(token[role]))
document_tensor.append(role_tensor)
document_tensor = torch.tensor(document_tensor, dtype=torch.long)
encoded_corpus.append(document_tensor)
encoded_corpora.append(encoded_corpus)
return encoded_corpora
def inject_pretrained_embeddings(model, embedding_path, feat_indices):
print("loading pre-trained embeddings...")
with open(embedding_path) as f:
for line in f:
line = line.split(' ')
word = line[0]
if ('word', word) in feat_indices:
index = feat_indices[('word', word)]
v = torch.Tensor([float(li) for li in line[1:]])
model.embedding.weight.data[index] = v
if ('lemma', word) in feat_indices:
index = feat_indices[('lemma', word)]
v = torch.Tensor([float(li) for li in reversed(line[1:])])
model.embedding.weight.data[index] = v
print("done!")
def eval(loss_func, feats, labels):
with torch.no_grad():
loss = 0
for fi, li in zip(feats, progressify(labels, "Evaluating datum %%i / %d" % len(labels))):
loss += loss_func(fi, li)
return loss / len(feats)
def train(loss_func, optimizer, feats, labels, lamb=1e-4):
feats, labels = jointshuffle(feats, labels)
mean_loss = None
def progressify_str(i, _):
s = "training datum %d / %d." % (i, len(labels))
if i > 0:
s += " Mean training loss: %f" % mean_loss
return s
for fi, li in zip(feats, progressify(labels, progressify_str)):
optimizer.zero_grad()
f = fi.unsqueeze(0)
loss = loss_func(f, li.unsqueeze(0))
if mean_loss is None:
mean_loss = loss
else:
mean_loss = .995 * mean_loss + .005 * loss
# l2 regularization
for param_group in optimizer.param_groups:
for param in param_group['params']:
loss += lamb * torch.sum(param ** 2)
loss.backward()
optimizer.step()
def predict(forward_func, feats):
predictions = []
with torch.no_grad():
for datum in feats:
batch = datum.unsqueeze(0)
#batch_feats = torch.stack(feats[i:i+predict_batch_size])
batch_predictions = forward_func(batch)
for pi in batch_predictions:
predictions.append(pi)
return predictions
def train_loop(model, optimizer, train_feats, train_labels, dev_feats, dev_labels, gamma=0.75, callback=None):
loss_func = model.neg_log_likelihood
#breakpoint()
running_average = -1
epoch = 0
while True:
print("Epoch %d" % epoch)
model.eval()
dev_score = callback()
#print("Dev loss: %f" % dev_loss)
running_average = gamma * running_average + (1-gamma) * dev_score
print("Running average: %f" % running_average)
if dev_score < running_average:
break
model.train()
train(loss_func, optimizer, train_feats, train_labels)
epoch += 1
def get_ev(model, feats, raw_labels, eval_mode='exact'):
print("Predicting spans...")
predicted = predict(model, feats)
predicted_processed = []
for doc in predicted:
doc_processed = []
for i in range(len(doc[0])):
token_processed = {}
for r, role in enumerate(roles):
if scheme == 'BE':
token_processed[role] = ' BE '[doc[r][i]]
elif scheme == 'BIO':
token_processed[role] = 'OIBOO'[doc[r][i]]
doc_processed.append(token_processed)
predicted_processed.append(doc_processed)
# BUG HERE!! should say scheme=scheme
return evaluate(predicted_processed, raw_labels, roles=roles, mode=eval_mode)
def run_model(
raw_train_feats, raw_train_labels, raw_dev_feats, raw_dev_labels, raw_test_feats, raw_test_label
):
(train_feats, dev_feats, test_feats), feat_indices = encode_feats(raw_train_feats, raw_dev_feats, raw_test_feats)
train_labels, dev_labels, test_labels = encode_labels(raw_train_labels, raw_dev_labels, raw_test_labels)
n_feats = len(feat_indices)
model = QuoteDetectionModel(n_feats, use_crf=use_crf, sample_steps=1, label_scheme=scheme, viterbi=False, transformer=False, pipeline=False)
if embedding_path is not None:
inject_pretrained_embeddings(model, embedding_path, feat_indices)
optimizer = optim.Adam(model.parameters())
best_f1 = -1
def training_callback():
nonlocal best_f1
if check_presence:
ev = get_ev(model, dev_feats, raw_dev_labels, eval_mode='presence')
else:
ev = get_ev(model, dev_feats, raw_dev_labels)
print(report(ev, roles=roles))
f1 = 0
if 'content' in ev:
tp = ev['content']['tp']
fp = ev['content']['fp']
fn = ev['content']['fn']
else:
tp = 0
fp = 0
fn = 0
for role in ev:
tp += ev[role]['tp']
fp += ev[role]['fp']
fn += ev[role]['fn']
if tp != 0:
p = tp / (tp + fp)
r = tp / (tp + fn)
f1 = 2 / (1/p + 1/r)
if f1 > best_f1:
print('Best model so far! Saving...')
best_f1 = f1
torch.save(model.state_dict(), model_path)
return f1
train_loop(model, optimizer, train_feats, train_labels, dev_feats, dev_labels, callback=training_callback)
print("Loading best model...")
model.load_state_dict(torch.load(model_path))
print("Evaluating on test-set...")
ev = get_ev(model, test_feats, raw_test_labels, eval_mode='exact')
print(report(ev, roles=roles))
if check_presence:
ev_presence = get_ev(model, test_feats, raw_test_labels, eval_mode='presence')
print('presence/absence:')
print(report(ev_presence, roles=roles))
return ev, ev_presence
else:
return ev
if __name__ == '__main__':
arguments = docopt(__doc__)
model_name = arguments['<model-name>']
corpus_type = arguments['<corpus-type>']
corpus_path = arguments['<corpus-path>']
embedding_path = arguments['<embedding-path>']
assert corpus_type in {'parc', 'stop', 'rwg'}
xvalidate = (corpus_type in {'stop', 'rwg'})
check_presence = (corpus_type == 'rwg')
if corpus_type in {'rwg', 'stop'}:
roles = [
'direct',
'indirect',
'free_indirect',
'reported'
]
elif corpus_type == 'parc':
roles = ['content']
cuda = True
if cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if corpus_type == 'rwg':
from rwg2feat import corpus_feats_and_labels
elif corpus_type == 'stop':
from stop2feat import corpus_feats_and_labels
elif corpus_type == 'parc':
from parc2feat import corpus_feats_and_labels
import sys
import os
use_crf = False
scheme = 'BE'
model_path = model_name + '.pkl'
if xvalidate:
raw_feats, raw_labels = corpus_feats_and_labels(corpus_path, label_scheme=scheme)
i_dev = len(raw_feats) // 10
i_train = 2 * i_dev
raw_feats, raw_labels = jointshuffle(raw_feats, raw_labels)
for step in range(10):
print("Cross-validation step %d" % step)
raw_test_feats = raw_feats[:i_dev]
raw_dev_feats = raw_feats[i_dev:i_train]
raw_train_feats = raw_feats[i_train:]
raw_test_labels = raw_labels[:i_dev]
raw_dev_labels = raw_labels[i_dev:i_train]
raw_train_labels = raw_labels[i_train:]
run_model(
raw_train_feats, raw_train_labels, raw_dev_feats, raw_dev_labels, raw_test_feats, raw_test_labels,
)
# cycle
raw_feats = raw_feats[i_dev:] + raw_feats[:i_dev]
raw_labels = raw_labels[i_dev:] + raw_labels[:i_dev]
else:
print('loading training data')
raw_train_feats, raw_train_labels = corpus_feats_and_labels(os.path.join(corpus_path, 'train'), label_scheme=scheme)
print('loading dev data')
raw_dev_feats, raw_dev_labels = corpus_feats_and_labels(os.path.join(corpus_path, 'dev'), label_scheme=scheme)
print('loading test data')
raw_test_feats, raw_test_labels = corpus_feats_and_labels(os.path.join(corpus_path, 'test'), label_scheme=scheme)
(train_feats, dev_feats, test_feats), feat_indices = encode_feats(raw_train_feats, raw_dev_feats, raw_test_feats)
n_feats = len(feat_indices)
train_labels, dev_labels, test_labels = encode_labels(raw_train_labels, raw_dev_labels, raw_test_labels, scheme=scheme)
model = QuoteDetectionModel(n_feats, use_crf=use_crf, sample_steps=1, label_scheme=scheme, viterbi=False, transformer=False, pipeline=False)
if embedding_path is not None:
inject_pretrained_embeddings(model, embedding_path, feat_indices)
optimizer = optim.Adam(model.parameters())
best_f1 = -1
def training_callback():
global best_f1
if check_presence:
ev = get_ev(model, dev_feats, raw_dev_labels, eval_mode='presence')
else:
ev = get_ev(model, dev_feats, raw_dev_labels)
print(report(ev, roles=roles))
f1 = 0
if 'content' in ev:
tp = ev['content']['tp']
fp = ev['content']['fp']
fn = ev['content']['fn']
else:
tp = 0
fp = 0
fn = 0
for role in ev:
tp += ev[role]['tp']
fp += ev[role]['fp']
fn += ev[role]['fn']
if tp != 0:
p = tp / (tp + fp)
r = tp / (tp + fn)
f1 = 2 / (1/p + 1/r)
if f1 > best_f1:
print('Best model so far! Saving...')
best_f1 = f1
torch.save(model.state_dict(), model_path)
return f1
train_loop(model, optimizer, train_feats, train_labels, dev_feats, dev_labels, callback=training_callback)
print("Loading best model...")
model.load_state_dict(torch.load(model_path))
print("Evaluating on test-set...")
ev = get_ev(model, test_feats, raw_test_labels)
print(report(ev, roles=roles))