
dash.js Face-to-Face Meeting 2022
Catchup Logic

Daniel Silhavy



Pull Request

• Changes discussed in this slide deck are part of the following PRs.
– https://github.com/Dash-Industry-Forum/dash.js/pull/3831
– https://github.com/Dash-Industry-Forum/dash.js/pull/3895

https://github.com/Dash-Industry-Forum/dash.js/pull/3831
https://github.com/Dash-Industry-Forum/dash.js/pull/3895


dash.js catchup behavior before 4.4.0

Target 
latency

Target Latency 
– minDrift

Presentation Delay

Decrease rateDo nothing

TimeShiftBufferDepth

Increase 
rate

Seek back to 
target

Target Latency 
+ minDrift

Target Latency 
+ maxDrift

We stopped catchup mode before target latency was reached



dash.js catchup in 4.4.1

Target 
latency

Presentation Delay

Decrease rate

TimeShiftBufferDepth

Increase rateSeek back to 
target

Target Latency 
+ maxDrift

Catchup mode always applied



Calculating the new playback rate

• const s = (cpr * 2) / (1 + Math.pow(Math.E, -d)); 

• newRate = (1 - cpr) + s;

• cpr = catchup playback rate
• d = multiple of the delta latency
• Math.e = base of natural logarithm

y = ex



Seek Problem
• How to deal with seeks triggered by the user?

• Currently we define a “latencyThreshold”: Use this parameter to set the maximum 
threshold for which live catch up is applied. For instance, if this value is set to 8 
seconds, then live catchup is only applied if the current live latency is equal or below 8 
seconds.

Target 
latency

Presentation Delay

Decrease rate

TimeShiftBufferDepth

Increase rate

Target Latency 
+ maxDrift

Seek back to 
target

Do 
nothing

latency
Threshold



Seek Problem - Options

• Option 1: 
– Leave as it is

• Option 2:
– Seek triggered by the user always deactivates catchup mechanism. Re-activating the catchup 

mode is up to the application. For instance, in the reference UI we wait for the user clicking on 
“Live” to re-activate

• Option 3:
– We set the target live delay to the seek target. Catchup mechanism is applied at this “new” live 

delay. We need to maintain the original live delay if the user wants to seek back to the initial live 
edge.



Additional Refactoring as part of the PR

• New ServiceDescriptionController class to handle all tasks related to the <ServiceDescription> 
element
– Added support for <OperatingBandwidth> element: min,max,target bitrate 
– Ensure easy implementation of profile specific logic

• New CatchupController class to handle all tasks related to applying the catchup mechanism

• Reduced size of PlaybackController to ensure better maintainability

• Use MediaPlayerModel as a proxy between classes and Settings if additional logic needs to be 
applied and the settings can not be used 1:1

• New class CustomParametersModel to save all callback functions and additional parameters 
defined by the app

• Remove enableLowLatency from Settings. Switch to low latency mode internally based on MPD 
parameters availabilityTimeComplete

• Calculate the live latency at a central place PlaybackController.computeAndSetLiveDelay



ProducerReferenceTime
• BBC implemented support for <ProducerReferenceTime> according to TS 103 285 

Clause 10.20.4.

• Example: 

AvailabilityStartTime (AST)
30

Period 0 Period 1

90

Seg 1

UTC now
150

General
• AST = 30
• Latency@target = 10
• timescale = 1

Period 0
• @start = 0

Period 1
• @start = 60
• EPT first segment = 2
• @presentationTimeOffset = 2 
• PRFT

• WCT = 95
• PT = 5 (relative to 

P1@start) 
• type = encoder

Calculation
ExpectedPresentationTime(WCT) 
= WCT – AST – Period@start + 
PTO

ExpectedPresentationTime(95) = 
95 – 30 – 60 + 2 = 7

Offset = PRFT@PT – 7 = -2 
Latency@target = 
Latency@target – Offset = 12


