forked from moshesipper/AddGBoost
-
Notifications
You must be signed in to change notification settings - Fork 0
/
addgboost.py
260 lines (223 loc) · 11.5 KB
/
addgboost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# AddGBoost
# copyright 2021 moshe sipper
# www.moshesipper.com
from string import ascii_lowercase
from random import choices
from sys import stdin
from pandas import read_csv
from statistics import median, mean
from mlxtend.evaluate import permutation_test
from pathlib import Path
from operator import itemgetter
from time import process_time
from argparse import ArgumentParser
from copy import deepcopy
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.datasets import fetch_openml, make_regression
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import KFold, train_test_split #GridSearchCV# #cross_val_score
from sklearn.datasets import load_boston, load_diabetes
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LassoLars, SGDRegressor
from sklearn.svm import LinearSVR
from sklearn.kernel_ridge import KernelRidge
from sklearn.experimental import enable_hist_gradient_boosting # noqa needed for HistGradientBoostingRegressor to work
from sklearn.ensemble import HistGradientBoostingRegressor#GradientBoostingRegressor, RandomForestRegressor,
from sklearn.preprocessing import StandardScaler
import warnings
from pmlb import fetch_data, regression_dataset_names
from lightgbm import LGBMRegressor
import optuna
optuna.logging.set_verbosity(optuna.logging.ERROR)#optuna.logging.WARNING)
MLAlgParams={ # 'categorical'/'int'/'float': for use by optuna
KernelRidge: [ ['categorical', 'kernel', ['linear', 'poly', 'rbf', 'sigmoid'] ],
['float', 'alpha', 1e-4, 1, 'log'],
['float', 'gamma', 0.01, 10, 'log'] ],
LassoLars: [ ['float', 'alpha', 1e-04, 1, 'log'] ],
SGDRegressor: [ ['float', 'alpha', 1e-05, 1, 'log'],
['categorical', 'penalty', ['l2', 'l1', 'elasticnet'] ] ],
LinearSVR: [ ['float', 'C', 1e-05, 1, 'log'],
['categorical', 'loss', ['epsilon_insensitive', 'squared_epsilon_insensitive'] ] ],
DecisionTreeRegressor: [['categorical', 'criterion', ['mse', 'friedman_mse', 'mae'] ],
['categorical', 'splitter', ['best', 'random'] ],
['categorical', 'max_features', ['sqrt','log2', None] ],
['int', 'min_samples_leaf', 1, 5, 'nolog'] ],
HistGradientBoostingRegressor: [ ['int', 'max_iter', 10, 100, 'nolog'],
['float', 'learning_rate', 0.01, 0.3, 'nolog'],
['categorical', 'loss', ['least_squares', 'least_absolute_deviation'] ] ],
LGBMRegressor: [ ['float', 'lambda_l1', 1e-8, 10.0, 'log'],
['float', 'lambda_l2', 1e-8, 10.0, 'log'],
['int', 'num_leaves', 2, 256, 'nolog'] ]
}
MLAlgs = list(MLAlgParams.keys())
MLAlgNames = [alg.__name__ for alg in MLAlgs]
def scoring(y, y_pred):
return mean_absolute_error(y, np.nan_to_num(y_pred))
def rand_str(n):
return ''.join(choices(ascii_lowercase, k=n))
def fprint(fname, s):
if stdin.isatty(): print(s) # running interactively
with open(Path(fname),'a') as f: f.write(s)
def save_params(fname, dsname, n_stages, n_trials, n_replicates, n_samples, n_features):
fprint(fname, f' dsname: {dsname}\n n_samples: {n_samples}\n n_features: {n_features:}\n n_stages: {n_stages}\n n_trials: {n_trials} \n n_replicates: {n_replicates} \n\n')
def get_args():
parser = ArgumentParser()
parser.add_argument('-resdir', dest='resdir', type=str, action='store', help='directory where results are placed')
parser.add_argument('-dsname', dest='dsname', type=str, action='store', help='dataset name')
parser.add_argument('-stages', dest='n_stages', type=int, action='store', help='number of AddGBoost stages')
parser.add_argument('-trials', dest='n_trials', type=int, action='store', help='number of Optuna trials')
parser.add_argument('-nrep', dest='n_replicates', type=int, action='store', help='number of replicate runs')
args = parser.parse_args()
if None in [getattr(args, arg) for arg in vars(args)]:
parser.print_help()
exit()
resdir, dsname, n_stages, n_trials, n_replicates = args.resdir+'/', args.dsname, args.n_stages, args.n_trials, args.n_replicates
# if not exists(resdir): makedirs(resdir)
fname = resdir + dsname + '_' + rand_str(6) + '.txt'
return fname, resdir, dsname, n_stages, n_trials, n_replicates
def get_dataset(dsname):
version, openml = -1, False
if dsname == 'regtest':
X, y = make_regression(n_samples=10, n_features=2, n_informative=1)
elif dsname == 'boston':
X, y = load_boston(return_X_y=True)
elif dsname == 'diabetes':
X, y = load_diabetes(return_X_y=True)
elif dsname in regression_dataset_names: # PMLB datasets
X, y = fetch_data(dsname, return_X_y=True, local_cache_dir='../datasets/pmlbreg/')
else:
try: # dataset from openml?
data = fetch_openml(data_id=int(dsname), cache=True, data_home='../datasets/scikit_learn_data')
X, y = data['data'], data['target']
dsname = data['details']['name']
version = data['details']['version']
openml = True
except:
try: # a csv file in datasets folder?
data = read_csv('../datasets/' + dsname + '.csv', sep=',')
array = data.values
X, y = array[:,0:-1], array[:,-1] # target is last col
# X, y = array[:,1:], array[:,0] # target is 1st col
except Exception as e:
print('looks like there is no such dataset')
exit(e)
n_samples, n_features = X.shape
return X, y, n_samples, n_features, dsname, version, openml
class AddGBoost(BaseEstimator):
def __init__(self, models=None):
self.models = models
def fit(self, X, y):
y_res = deepcopy(y)
for model in self.models:
model.fit(X, y_res)
p = model.predict(X)
y_res -= np.nan_to_num(p)
return self
def predict(self, X):
pred = np.zeros(X.shape[0])
for model in self.models:
pred += np.nan_to_num(model.predict(X))
return np.nan_to_num(pred)
# end class AddGBoost
class Objective(object):
def __init__(self, alg, X, y, n_stages=-1):
self.alg = alg
self.X = X
self.y = y
self.n_stages = n_stages
def create_single_model(self, trial, alg, stage=-1):
s = '' if stage==-1 else f'_{stage}'
kwargs = {}
for param in MLAlgParams[alg]:
param_name = f'{alg.__name__}_{param[1]}{s}'
if param[0] == 'categorical':
p = trial.suggest_categorical(param_name, param[2])
elif param[0] == 'int':
p = trial.suggest_int(param_name, param[2], param[3], log=param[4]=='log')
elif param[0] == 'float':
p = trial.suggest_float(param_name, param[2], param[3], log=param[4]=='log')
else:
exit(f'create_model, unknown hyperparameter type: {param[0]}')
kwargs.update({param[1]: p})
model = alg(**kwargs)
return model
def create_model(self, trial):
if self.alg==AddGBoost:
models = []
for stage in range(self.n_stages):
name = trial.suggest_categorical(f'regressor_{stage}', MLAlgNames)
alg = MLAlgs[MLAlgNames.index(name)]
models.append(self.create_single_model(trial, alg, stage=stage))
model = AddGBoost(models=models)
else:
model = self.create_single_model(trial, self.alg)
return model
def __call__(self, trial):
model = self.create_model(trial)
X, y = self.X, self.y
scores = []
kf = KFold(n_splits=5, shuffle=True)
for train_index, test_index in kf.split(X):
model.fit(X[train_index], y[train_index])
scores.append(scoring(y[test_index], model.predict(X[test_index])))
final_score = mean(scores)
model.fit(X, y)
trial.set_user_attr(key='best_model', value=model)
return final_score
# end class Objective
def optuna_callback(study, trial):
if study.best_trial.number == trial.number:
study.set_user_attr(key='best_model', value=trial.user_attrs['best_model'])
# main
def main():
start_time = process_time()
fname, resdir, dsname_id, n_stages, n_trials, n_replicates = get_args()
X, y, n_samples, n_features, dsname, version, openml = get_dataset(dsname_id)
print_ds = f'{dsname} ({dsname_id})' if openml else f'{dsname}' # openml datasets given as ints, get_dataset converts to string
save_params(fname, print_ds, n_stages, n_trials, n_replicates, n_samples, n_features)
allreps = dict.fromkeys(MLAlgs + [AddGBoost]) # for recording scores and params across all replicates
for k in allreps:
allreps[k] = {'test_scores': [], 'params': []}
for rep in range(1, n_replicates+1):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
sc = StandardScaler()
X_train = sc.fit_transform(X_train) # scaled data has mean 0 and variance 1 (only over training set)
X_test = sc.transform(X_test) # use same scaler as one fitted to training data
for alg in MLAlgs + [AddGBoost]:
# run Optuna
objective = Objective(alg, X_train, y_train, n_stages=n_stages)
study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=n_trials, callbacks=[optuna_callback])
# get Optuna's best results
best_model = study.user_attrs['best_model']
allreps[alg]['params'].append(study.best_trial.params)
# compute test score
test_score = scoring(y_test, best_model.predict(X_test))
allreps[alg]['test_scores'].append(test_score)
fprint(fname, f'rep {rep}, {alg.__name__}, {round(test_score,3)}, {allreps[alg]["params"][-1]}\n')
# done all replicate runs, compute and report final summary of experiment's stats
fprint(fname, f"\n*Summary of experiment's results over {n_replicates} replicates: \n")
medians = [ [alg, median(allreps[alg]['test_scores'])] for alg in MLAlgs + [AddGBoost]]
medians = sorted(medians, key=itemgetter(1), reverse=False)
# 10,000-round permutation test to assess statistical significance of diff in test scores between 1st and 2nd places
pval = permutation_test(allreps[medians[0][0]]['test_scores'], allreps[medians[1][0]]['test_scores'], method='approximate', num_rounds=10_000,\
func=lambda x, y: np.abs(np.median(x) - np.median(y)))
pp = ''
if medians[0][0] == AddGBoost and pval<0.05: # ranked first, statistically significant
pp = '!'
elif medians[1][0] == AddGBoost and pval>=0.05: # ranked second, statistically insignificant
pp = '=='
s_res = f'*>> {dsname_id}, '
for i, m in enumerate(medians):
s_res += f'#{i+1}: {m[0].__name__} {round(m[1],4)}'
if m[0]==AddGBoost:
s_res += pp
s_res += ', '
fprint(fname, s_res[:-2] + '\n')
runtime = process_time() - start_time
fprint(fname, f'*runtime {runtime}\n')
##############
if __name__== "__main__":
warnings.filterwarnings("ignore")
main()