-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_ceb.py
274 lines (225 loc) · 12.8 KB
/
run_ceb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import asyncio
import os
import together
from together import AsyncTogether, Together
import json
import datasets
from functools import partial
import copy
from utils import *
import ast
import random
random.seed(42)
import argparse
import re
os.environ['TOGETHER_API_KEY'] = ''
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
async_client = AsyncTogether(api_key=os.environ.get("TOGETHER_API_KEY"))
from transformers import AutoTokenizer
from huggingface_hub import login
login("")
def process_fn(
item,
model,
args,
reference_models=[],
temperature=0.7,
max_tokens=2048,
tokenizer_dict={},
rounds=1,
):
messages = [{"role": "user", "content": item["question"]}]
references = []
internal_result = {}
if reference_models != []:
token_num_dict = {model_name: 0 if model_name != model else {'debate':0, 'moderate':0, 'aggregate':0} for model_name in reference_models}
else:
token_num_dict = {model: 0}
i_round=0
if len(references) == 0 and len(reference_models) > 0:
prev_references = []
role_prompt_list = []
for i_round in range(rounds):
if i_round == 0 and args.add_role:
if not os.path.exists('prompt/{}/role_description.json'.format(args.dataset)):
os.makedirs('prompt/{}/'.format(args.dataset), exist_ok=True)
messages_role = [{"role": "user", "content": args.role_generation_prompt.format(len(reference_models), len(reference_models), args.task)}]
role_prompt, input_messages = generate_together(
messages=messages_role,
model=model,
temperature=temperature,
max_tokens=max_tokens,
)
if role_prompt is not None:
# token_num_dict[model]['role'] += len(tokenizer_dict[model].tokenize(role_prompt))
# token_num_dict[model]['role'] += sum([len(tokenizer_dict[model].tokenize(message['content'])) for message in input_messages])
role_prompt_list = extract_role_from_output(role_prompt)
with open('prompt/{}/role_description.json'.format(args.dataset),'w') as f:
json.dump(role_prompt_list,f,indent=2)
else:
role_prompt_list = json.load(open('prompt/{}/role_description.json'.format(args.dataset)))
if len(role_prompt_list) < len(reference_models):
messages_role = [{"role": "user", "content": args.role_generation_prompt.format(len(reference_models), len(reference_models), args.task)}]
role_prompt, input_messages = generate_together(
messages=messages_role,
model=model,
temperature=temperature,
max_tokens=max_tokens,
)
if role_prompt is not None:
role_prompt_list = extract_role_from_output(role_prompt)
with open('prompt/{}/role_description.json'.format(args.dataset),'w') as f:
json.dump(role_prompt_list,f,indent=2)
references = []
internal_result['round_{}'.format(i_round)] = {}
for idx, role_prompt in enumerate(reference_models):
reference, input_messages = generate_with_references(
model=args.reference_models[idx],
messages=messages,
system=args.aggreagator_system_prompt,
role=role_prompt_list[idx] if args.add_role else '',
references=prev_references,
temperature=temperature,
max_tokens=max_tokens,
)
if reference is not None:
internal_result['round_{}'.format(i_round)][args.reference_models[idx]] = reference
references.append(reference)
if args.reference_models[idx] != model:
token_num_dict[args.reference_models[idx]] += len(tokenizer_dict[args.reference_models[idx]].tokenize(reference))
token_num_dict[args.reference_models[idx]] += sum([len(tokenizer_dict[args.reference_models[idx]].tokenize(message['content'])) for message in input_messages])
else:
token_num_dict[model]['debate'] += len(tokenizer_dict[model].tokenize(reference))
token_num_dict[model]['debate'] += sum([len(tokenizer_dict[model].tokenize(message['content'])) for message in input_messages])
if references != []:
if args.moderate_select or args.moderate_end:
try:
message_moderator = args.moderator_system_prompt.format(args.num_select_response, args.num_select_response, item["question"])
for i, reference in enumerate(references):
message_moderator += f"Response {i}.\n{reference}"
message_moderator += '\nOutput:'
message_moderator = [{"role": "user", "content": message_moderator}]
judge_output, input_messages = generate_together(
messages=message_moderator,
model=model,
temperature=temperature,
max_tokens=max_tokens,
)
chosen_responses = [i for i in range(len(references))]
end_debate = False
token_num_dict[model]['moderate'] += len(tokenizer_dict[model].tokenize(judge_output))
token_num_dict[model]['moderate'] += sum([len(tokenizer_dict[model].tokenize(message['content'])) for message in input_messages])
if args.moderate_select or args.moderate_end:
chosen_responses_output, end_debate_output = extract_indexes_and_indicator_from_output(judge_output)
if chosen_responses_output is None or any([chosen_response>=len(references) for chosen_response in chosen_responses_output]):
chosen_responses_output = random.sample([i for i in range(len(references))], args.num_select_response)
if len(chosen_responses_output) > args.num_select_response:
chosen_responses_output = random.sample(chosen_responses_output, args.num_select_response)
if args.moderate_select:
chosen_responses = chosen_responses_output
internal_result['round_{}'.format(i_round)]['chosen response'] = chosen_responses_output
if args.moderate_end:
end_debate = end_debate_output
internal_result['round_{}'.format(i_round)]['end'] = end_debate_output
references = [references[i] for i in chosen_responses]
if args.moderate_end and end_debate:
break
except Exception as E:
print(E)
return {
"response": json.dumps({
"choices":[{"message":{"content": None, "role":"assistant"}}]
}),
"internal_result": internal_result,
"generator": model + "-together",
"judge_output": judge_output,
"chosen_responses": chosen_responses,
"token_num_dict":token_num_dict,
"total_round": i_round
}
if i_round < rounds - 1:
prev_references = references
references = []
output, input_messages = generate_with_references(
model=model,
messages=messages,
references=references,
system=args.aggreagator_system_prompt,
)
if reference_models != []:
token_num_dict[model]['aggregate'] += len(tokenizer_dict[model].tokenize(output))
token_num_dict[model]['aggregate'] += sum([len(tokenizer_dict[model].tokenize(message['content'])) for message in input_messages])
else:
token_num_dict[model] += len(tokenizer_dict[model].tokenize(output))
token_num_dict[model] += sum([len(tokenizer_dict[model].tokenize(message['content'])) for message in input_messages])
return {
"response": json.dumps({
"choices":[{"message":{"content": output, "role":"assistant"}}]
}),
"generator": model + "-together",
"judge_output": None,
"chosen_responses": None,
"token_num_dict":token_num_dict,
"total_round": i_round,
"internal_result": internal_result
}
def generate_for_ceb(
args
):
args.moderator_system_prompt = open('prompt/{}/moderator_system_prompt_v2.txt'.format(args.dataset)).read()
args.aggreagator_system_prompt=open('prompt/{}/aggreagator_system_prompt.txt'.format(args.dataset)).read()
args.role_generation_prompt=open('prompt/{}/role_generation_prompt_v2.txt'.format(args.dataset)).read()
args.task = open('prompt/{}/task.txt'.format(args.dataset)).read()
if args.reference_models != []:
tokenizer_dict = {model_name: AutoTokenizer.from_pretrained(get_tokenizer_name(model_name)) for model_name in args.reference_models}
else:
tokenizer_dict = {args.model: AutoTokenizer.from_pretrained(get_tokenizer_name(args.model))}
eval_set = []
for file in os.listdir('data/{}'.format(args.dataset)):
data = json.load(open(os.path.join('data/{}'.format(args.dataset), file)))
for line in data:
eval_set.append(line)
sample_num = min(args.sample_num, len(eval_set))
eval_set = random.sample(eval_set, sample_num)
eval_set = {
**{key: [item[key] for item in eval_set] for key in eval_set[0].keys()},
**{'question': [item['prompt'] for item in eval_set]}
}
eval_set = datasets.Dataset.from_dict(eval_set)
eval_set = eval_set.map(
partial(
process_fn,
model=args.model,
reference_models=args.reference_models,
temperature=args.temperature,
max_tokens=args.max_tokens,
rounds=args.rounds,
tokenizer_dict=tokenizer_dict,
args=args
),
batched=False,
num_proc=args.num_proc,
)
output_folder = 'output/{}'.format(args.dataset)
os.makedirs(output_folder, exist_ok=True)
model_name = args.model.split('/')[1]
output_path = os.path.join(output_folder, 'case_study_model-{}_reference_model-{}_rounds-{}_num_select_response-{}_add_role-{}_moderate_end-{}_moderate_select-{}_num_models-{}.jsonl'.format(model_name,len(args.reference_models),args.rounds,args.num_select_response,args.add_role,args.moderate_end,args.moderate_select,len(args.reference_models)))
with open(output_path, "w") as f:
for item in eval_set:
f.write(json.dumps(item)+'\n')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Description of your program")
parser.add_argument('--dataset', type=str, help='dataset to use', default='CEB-Conversation-S')
parser.add_argument('--model', type=str, help='moderater/ aggregator model to use', default='Qwen/Qwen2-72B-Instruct')
parser.add_argument('--reference_models', type=str, nargs='+', help='debate models to use', default=[])
parser.add_argument('--rounds', type=int, help='max number of debate round', default=2)
parser.add_argument('--num_select_response', type=int, help='number of selected response in each iteration', default=2)
parser.add_argument('--num_proc', type=int, help='max number of process', default=6)
parser.add_argument('--temperature', type=float, help='temperature', default=0.7)
parser.add_argument('--max_tokens', type=int, help='max_token', default=2048)
parser.add_argument('--sample_num', type=int, help='number of samples to use', default=400)
parser.add_argument('--add_role', action='store_true', help='add different role description to models')
parser.add_argument('--moderate_end', action='store_true', help='end the debate in advance')
parser.add_argument('--moderate_select', action='store_true', help='select a sbuset of response for the nextpip install protobuf iteration')
args = parser.parse_args()
generate_for_ceb(args)