-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimprove_loss.py
166 lines (142 loc) · 6.22 KB
/
improve_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
import torch.nn as nn
import torch.nn.functional as func
# from mmcv.cnn import normal_init
class MedianTripletHead(nn.Module):
def __init__(self, predictor, gamma, size_average=True):
super(MedianTripletHead, self).__init__()
self.predictor = predictor#没有builder类
self.size_average = size_average
self.ranking_loss = nn.MarginRankingLoss(margin=100.)
self.gamma = gamma
def init_weights(self, init_linear='normal'):
self.predictor.init_weights(init_linear=init_linear)
def forward(self, input, target):
pred = self.predictor([input])[0]
pred_norm = nn.functional.normalize(pred, dim=1)
target_norm = nn.functional.normalize(target, dim=1)
n = input.size(0)
dist = -2. * torch.matmul(pred_norm, target_norm.t())
idx = torch.arange(n)
mask = idx.expand(n, n).eq(idx.expand(n, n).t())
dist_ap, dist_an = [], []
for i in range(n):
dist_ap.append(dist[i][mask[i]].max().unsqueeze(0))
dist_an.append(dist[i][mask[i] == 0].median().unsqueeze(0))
#down_k = torch.topk(dist[i][mask[i]==0], 5, dim=-1, largest=False)
#down_k = down_k[0][-1].unsqueeze(0)
#dist_an.append(down_k)
dist_ap = torch.cat(dist_ap)
dist_an = torch.cat(dist_an)
y = torch.ones_like(dist_an)
loss_triplet = self.ranking_loss(dist_an, self.gamma * dist_ap, y)
return loss_triplet
class SupConLoss(nn.Module):
def __init__(self, temperature=0.07, contrast_mode='all',
base_temperature=0.07):
super(SupConLoss, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.base_temperature = base_temperature
def forward(self, features, labels=None, mask=None):
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
if len(features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(features.shape) > 3:
features = features.view(features.shape[0], features.shape[1], -1)
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device)
else:
mask = mask.float().to(device)
contrast_count = features.shape[1]
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
if self.contrast_mode == 'one':
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# compute logits
anchor_dot_contrast = torch.div(
torch.matmul(anchor_feature, contrast_feature.T),
self.temperature)
# for numerical stability
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
# tile mask
mask = mask.repeat(anchor_count, contrast_count)
# mask-out self-contrast cases
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0
)
mask = mask * logits_mask
# compute log_prob
exp_logits = torch.exp(logits) * logits_mask
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
# compute mean of log-likelihood over positive
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
# loss
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
loss = loss.view(anchor_count, batch_size).mean()
return loss
class unifyloss(nn.Module):
def __init__(self, tt=1, ts=1):
super(unifyloss, self).__init__()
self.tt = tt
self.ts = ts
def forward(self, feature1, feature2):
f1 = func.softmax(feature1.div_(self.tt))
f2 = func.softmax(feature2.div_(self.ts)).exp_()
loss = torch.mm(f1, f2.T)
loss = loss.mean()
print(loss)
return loss
def get_negative_mask(batch_size):
negative_mask = torch.ones((batch_size, 2 * batch_size), dtype=bool)
for i in range(batch_size):
negative_mask[i, i] = 0
negative_mask[i, i + batch_size] = 0
negative_mask = torch.cat((negative_mask, negative_mask), 0)
return negative_mask
def HCLloss(out_1,out_2,tau_plus,batch_size,beta, estimator):
# neg score
temperature = 7000
out = torch.cat([out_1, out_2], dim=0)
neg = torch.exp(torch.mm(out, out.t().contiguous()) / temperature)
old_neg = neg.clone()
mask = get_negative_mask(batch_size).cuda()
neg = neg.masked_select(mask).view(2 * batch_size, -1)
# pos score
pos = torch.exp(torch.sum(out_1 * out_2, dim=-1) / temperature)
pos = torch.cat([pos, pos], dim=0)
# negative samples similarity scoring
if estimator=='hard':
N = batch_size * 2 - 2
imp = (beta* neg.log()).exp()
reweight_neg = (imp*neg).sum(dim = -1) / imp.mean(dim = -1)
Ng = (-tau_plus * N * pos + reweight_neg) / (1 - tau_plus)
# constrain (optional)
Ng = torch.clamp(Ng, min = N * np.e**(-1 / temperature))
elif estimator=='easy':
Ng = neg.sum(dim=-1)
else:
raise Exception('Invalid estimator selected. Please use any of [hard, easy]')
# contrastive loss
loss = (- torch.log(pos / (pos + Ng) )).mean()
return loss