forked from onnx/tensorflow-onnx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_pretrained_model.py
107 lines (94 loc) · 4.02 KB
/
save_pretrained_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
"""
Save pre-trained model.
"""
import tensorflow as tf
import numpy as np
# pylint: disable=redefined-outer-name,reimported,import-outside-toplevel
def save_pretrained_model(sess, outputs, feeds, out_dir, model_name="pretrained"):
"""Save pretrained model and config"""
try:
import os
import sys
import tensorflow as tf
import subprocess
to_onnx_path = "{}/to_onnx".format(out_dir)
if not os.path.isdir(to_onnx_path):
os.makedirs(to_onnx_path)
saved_model = "{}/saved_model".format(to_onnx_path)
inputs_path = "{}/inputs.npy".format(to_onnx_path)
pretrained_model_yaml_path = "{}/pretrained.yaml".format(to_onnx_path)
envars_path = "{}/environment.txt".format(to_onnx_path)
pip_requirement_path = "{}/requirements.txt".format(to_onnx_path)
print("===============Save Saved Model========================")
if os.path.exists(saved_model):
print("{} already exists, SKIP".format(saved_model))
return
print("Save tf version, python version and installed packages")
tf_version = tf.__version__
py_version = sys.version
pip_packages = subprocess.check_output([sys.executable, "-m", "pip", "freeze", "--all"])
pip_packages = pip_packages.decode("UTF-8")
with open(envars_path, "w") as fp:
fp.write(tf_version + os.linesep)
fp.write(py_version)
with open(pip_requirement_path, "w") as fp:
fp.write(pip_packages)
print("Save model for tf2onnx: {}".format(to_onnx_path))
# save inputs
inputs = {}
for inp, value in feeds.items():
if isinstance(inp, str):
inputs[inp] = value
else:
inputs[inp.name] = value
np.save(inputs_path, inputs)
print("Saved inputs to {}".format(inputs_path))
# save graph and weights
from tensorflow.saved_model import simple_save
# pylint: disable=unnecessary-comprehension
simple_save(sess, saved_model,
{n: i for n, i in zip(inputs.keys(), feeds.keys())},
{op.name: op for op in outputs})
print("Saved model to {}".format(saved_model))
# generate config
pretrained_model_yaml = '''
{}:
model: ./saved_model
model_type: saved_model
input_get: get_ramp
'''.format(model_name)
pretrained_model_yaml += " inputs:\n"
for inp, _ in inputs.items():
pretrained_model_yaml += \
" \"{input}\": np.array(np.load(\"./inputs.npy\")[()][\"{input}\"])\n".format(input=inp)
outputs = [op.name for op in outputs]
pretrained_model_yaml += " outputs:\n"
for out in outputs:
pretrained_model_yaml += " - {}\n".format(out)
with open(pretrained_model_yaml_path, "w") as f:
f.write(pretrained_model_yaml)
print("Saved pretrained model yaml to {}".format(pretrained_model_yaml_path))
print("=========================================================")
except Exception as ex: # pylint: disable=broad-except
print("Error: {}".format(ex))
def test():
"""Test sample."""
x_val = np.random.rand(5, 20).astype(np.float32)
y_val = np.random.rand(20, 10).astype(np.float32)
x = tf.placeholder(tf.float32, x_val.shape, name="x")
y = tf.placeholder(tf.float32, y_val.shape, name="y")
z = tf.matmul(x, y)
w = tf.get_variable("weight", [5, 10], dtype=tf.float32)
init = tf.global_variables_initializer()
outputs = [z + w]
feeds = {x: x_val, y: y_val}
with tf.Session() as sess:
sess.run(init)
sess.run(outputs, feeds)
# NOTE: NOT override the saved model, so put below snippet after testing the BEST model.
# if you perform testing several times.
save_pretrained_model(sess, outputs, feeds, "./tests", model_name="test")
if __name__ == "__main__":
test()