-
Notifications
You must be signed in to change notification settings - Fork 721
/
Copy pathmnn_nanodet.h
109 lines (92 loc) · 4.23 KB
/
mnn_nanodet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
//
// Created by DefTruth on 2021/10/6.
//
#ifndef LITE_AI_TOOLKIT_MNN_CV_MNN_NANODET_H
#define LITE_AI_TOOLKIT_MNN_CV_MNN_NANODET_H
#include "lite/mnn/core/mnn_core.h"
namespace mnncv
{
class LITE_EXPORTS MNNNanoDet : public BasicMNNHandler
{
public:
explicit MNNNanoDet(const std::string &_mnn_path, unsigned int _num_threads = 1); //
~MNNNanoDet() override = default;
private:
// nested classes
typedef struct
{
float grid0;
float grid1;
float stride;
} NanoCenterPoint;
typedef struct
{
float ratio;
int dw;
int dh;
bool flag;
} NanoScaleParams;
private:
const float mean_vals[3] = {103.53f, 116.28f, 123.675f}; // BGR
const float norm_vals[3] = {0.017429f, 0.017507f, 0.017125f};
const char *class_names[80] = {
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard",
"cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase",
"scissors", "teddy bear", "hair drier", "toothbrush"
};
enum NMS
{
HARD = 0, BLEND = 1, OFFSET = 2
};
static constexpr const unsigned int nms_pre = 1000;
static constexpr const unsigned int max_nms = 30000;
// multi-levels center points
std::vector<unsigned int> strides = {8, 16, 32};
std::unordered_map<unsigned int, std::vector<NanoCenterPoint>> center_points;
bool center_points_is_update = false;
private:
void transform(const cv::Mat &mat_rs) override; // without resize
void initialize_pretreat(); //
void resize_unscale(const cv::Mat &mat,
cv::Mat &mat_rs,
int target_height,
int target_width,
NanoScaleParams &scale_params);
// only generate once
void generate_points(unsigned int target_height, unsigned int target_width);
void generate_bboxes_single_stride(const NanoScaleParams &scale_params,
const MNN::Tensor *device_cls_pred,
const MNN::Tensor *device_dis_pred,
unsigned int stride,
float score_threshold,
float img_height,
float img_width,
std::vector<types::Boxf> &bbox_collection);
void generate_bboxes(const NanoScaleParams &scale_params,
std::vector<types::Boxf> &bbox_collection,
const std::map<std::string, MNN::Tensor*> &output_tensors,
float score_threshold, float img_height,
float img_width); // rescale & exclude
void nms(std::vector<types::Boxf> &input, std::vector<types::Boxf> &output,
float iou_threshold, unsigned int topk, unsigned int nms_type);
public:
/**
* @param mat cv::Mat BGR format
* @param detected_boxes vector of Boxf to catch detected boxes.
* @param score_threshold default 0.45f, only keep the result which >= score_threshold.
* @param iou_threshold default 0.3f, iou threshold for NMS.
* @param topk default 100, maximum output boxes after NMS.
* @param nms_type the method.
*/
void detect(const cv::Mat &mat, std::vector<types::Boxf> &detected_boxes,
float score_threshold = 0.45f, float iou_threshold = 0.3f,
unsigned int topk = 100, unsigned int nms_type = NMS::OFFSET);
};
}
#endif //LITE_AI_TOOLKIT_MNN_CV_MNN_NANODET_H