-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
270 lines (230 loc) · 10 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import shutil
import argparse
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from Lib.config import update_config, config
from Lib.utils import create_logger, save_checkpoint, model_summary, _to_yaml
from Lib.cls_function import train, validate
from Lib.models import build_model
from torch.utils.tensorboard import SummaryWriter
import random
import numpy as np
randomSeed = 1
random.seed(randomSeed) # python random seed
torch.manual_seed(randomSeed) # pytorch random seed
np.random.seed(randomSeed) # numpy random seed
def get_optimizer(cfg, model):
if cfg.TRAIN.OPTIMIZER == 'sgd':
optimizer = optim.SGD(
filter(lambda p: p.requires_grad, model.parameters()), # use the parameters with requires_grad=True
lr=cfg.TRAIN.LR,
momentum=cfg.TRAIN.MOMENTUM,
weight_decay=cfg.TRAIN.WD,
nesterov=cfg.TRAIN.NESTEROV
)
elif cfg.TRAIN.OPTIMIZER == 'adam':
optimizer = optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()),
lr=cfg.TRAIN.LR
)
else:
raise ValueError()
return optimizer
def build_dataloader(cfg): # support cifar10 and cifar100 and imagenet
dataset_name = cfg.DATASET.DATASET
if 'cifar' in dataset_name:
if dataset_name == 'cifar10':
dataset = datasets.CIFAR10
elif dataset_name == 'cifar100':
dataset = datasets.CIFAR100
else:
raise ValueError
normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4), #
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
transform_valid = transforms.Compose([
transforms.ToTensor(),
normalize,
])
train_dataset = dataset(root=f'{cfg.DATASET.ROOT}', train=True, download=True, transform=transform_train)
valid_dataset = dataset(root=f'{cfg.DATASET.ROOT}', train=False, download=True, transform=transform_valid)
elif dataset_name == 'imagenet':
traindir = os.path.join(config.DATASET.ROOT, config.DATASET.TRAIN_SET)
valdir = os.path.join(config.DATASET.ROOT, config.DATASET.TEST_SET)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
transform_train = transforms.Compose([
transforms.RandomResizedCrop(config.MODEL.IMAGE_SIZE[0]),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
transform_valid = transforms.Compose([
transforms.Resize(int(config.MODEL.IMAGE_SIZE[0] / 0.875)),
transforms.CenterCrop(config.MODEL.IMAGE_SIZE[0]),
transforms.ToTensor(),
normalize,
])
train_dataset = datasets.ImageFolder(traindir, transform_train)
valid_dataset = datasets.ImageFolder(valdir, transform_valid)
else:
raise NotImplementedError
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=config.TRAIN.BATCH_SIZE,
shuffle=True,
num_workers=config.WORKERS,
pin_memory=True
)
valid_loader = torch.utils.data.DataLoader(
valid_dataset,
batch_size=config.TEST.BATCH_SIZE,
shuffle=False,
num_workers=config.WORKERS,
pin_memory=True
)
return train_loader, valid_loader
def parse_args():
parser = argparse.ArgumentParser(description='Train classification network')
parser.add_argument('--cfg',
help='the default setting is sdnet18 for cifar10 if no specific .yaml be chosen',
type=str,
)
parser.add_argument('--dir_phase',
help='the name for each experiment',
type=str,
default='train')
parser.add_argument('--log_phase',
help='the name for each validation (specific for robust test)',
type=str,
default='valid')
parser.add_argument('opts',
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER)
args = parser.parse_args()
update_config(config, args)
return args
def main():
args = parse_args()
logger, final_output_dir = create_logger(
config, args.dir_phase)
_to_yaml(config, os.path.join(final_output_dir, 'config.yaml'))
# cudnn related setting
cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = True
# build model and load ckpt from another experiment if so.
model = build_model(config)
logger.info("model summary")
logger.info(model_summary(model))
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = get_optimizer(config, model)
lr_scheduler = None
# setting tensorboard writer
writer_dict = {
'writer': SummaryWriter(log_dir=final_output_dir),
'train_global_steps': 0,
'valid_global_steps': 0,
}
best_perf = 0.0
best_loss_total, best_loss_cls, best_loss_r, best_loss_c = 0.0, 0.0, 0.0, 0.0
best_model = False
last_epoch = config.TRAIN.BEGIN_EPOCH
if config.TRAIN.RESUME:
# resume ckpt from current pth when the experiment was interrupted for some reasons.
model_state_file = os.path.join(final_output_dir,
'checkpoint.pth.tar')
if os.path.isfile(model_state_file):
checkpoint = torch.load(model_state_file)
last_epoch = checkpoint['epoch']
best_perf = checkpoint['perf']
model.module.load_state_dict(checkpoint['state_dict'])
# Update weight decay if needed
checkpoint['optimizer']['param_groups'][0]['weight_decay'] = config.TRAIN.WD
optimizer.load_state_dict(checkpoint['optimizer'])
if 'lr_scheduler' in checkpoint:
if config.TRAIN.LR_SCHEDULER != 'step':
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, 1e5, last_epoch=checkpoint['lr_scheduler']['last_epoch'])
elif isinstance(config.TRAIN.LR_STEP, list):
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, config.TRAIN.LR_STEP, config.TRAIN.LR_FACTOR,
last_epoch - 1)
else:
lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, config.TRAIN.LR_STEP, config.TRAIN.LR_FACTOR,
last_epoch - 1)
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
logger.info("=> loaded checkpoint (epoch {})".format(checkpoint['epoch']))
best_model = True
# Data loading code
dataset_name = config.DATASET.DATASET
train_loader, valid_loader = build_dataloader(config)
# Learning rate scheduler
if lr_scheduler is None:
if config.TRAIN.LR_SCHEDULER != 'step':
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, len(train_loader) * config.TRAIN.END_EPOCH, eta_min=1e-6)
elif isinstance(config.TRAIN.LR_STEP, list):
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, config.TRAIN.LR_STEP, config.TRAIN.LR_FACTOR,
last_epoch - 1)
else:
lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, config.TRAIN.LR_STEP, config.TRAIN.LR_FACTOR,
last_epoch - 1)
logger.info(f"lr_scheduler: {config.TRAIN.LR_SCHEDULER}")
# Training code
for epoch in range(last_epoch, config.TRAIN.END_EPOCH):
topk = (1,) if dataset_name == 'cifar10' else (1, 5)
# train for one epoch
train(config, train_loader, model, criterion, optimizer, lr_scheduler, epoch,
final_output_dir, None, writer_dict, topk=topk)
if config.TRAIN.LR_SCHEDULER == 'step':
lr_scheduler.step()
torch.cuda.empty_cache()
# evaluate on validation set
perf_indicator = validate(config, valid_loader, model, criterion, lr_scheduler, epoch,
final_output_dir, None, writer_dict, topk=topk)
torch.cuda.empty_cache()
writer_dict['writer'].flush()
if perf_indicator[0] > best_perf:
best_perf = perf_indicator[0]
best_loss_total = perf_indicator[1]
best_loss_cls = perf_indicator[2]
best_loss_r = perf_indicator[3]
best_loss_c = perf_indicator[4]
best_model = True
else:
best_model = False
logger.info('Test: Best Accuracy@1 {:.4f}, total_loss {:.4f}, cls_loss {:.4f}, r_loss {:.4f}, c_loss {:.4f}'.format(best_perf, best_loss_total, best_loss_cls, best_loss_r, best_loss_c))
logger.info('=> saving checkpoint to {}'.format(final_output_dir))
save_checkpoint({
'epoch': epoch + 1,
# 'model': config.MODEL.NAME,
'state_dict': model.module.state_dict(),
'perf': perf_indicator[0],
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
}, best_model, final_output_dir, filename='checkpoint.pth.tar')
final_model_state_file = os.path.join(final_output_dir,
'final_state.pth.tar')
logger.info('saving final model state to {}'.format(
final_model_state_file))
torch.save(model.module.state_dict(), final_model_state_file)
writer_dict['writer'].close()
if __name__ == '__main__':
main()