forked from CRIPAC-DIG/HeterFC
-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
289 lines (261 loc) · 13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from datautils import wiki_path,dev_retrieved_path,test_retrieved_path,train_retrieved_path#,smalltrainpath
from cmath import log
from curses import window
import os
import torch
import torch.nn as nn
import torch.optim as optim
import jsonlines
import numpy as np
from tqdm import tqdm
from prettytable import PrettyTable
from torch_geometric.loader import DataLoader
# from transformers import BertForSequenceClassification, BertTokenizer
from transformers import RobertaForSequenceClassification, RobertaTokenizer
from transformers import get_scheduler, AdamW,get_linear_schedule_with_warmup
from preprocess import preprocess_wt, prepare_graph_data_word_level_attention
from model import T2GV2_noEnt
from feverous_scorer import feverous_score
import torch.nn.functional as F
import random
def setup_seed(seed=0):
torch.manual_seed(seed) # 为CPU设置随机种子
np.random.seed(seed) # Numpy module.
random.seed(seed) # Python random module.
if torch.cuda.is_available():
# torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.cuda.manual_seed(seed) # 为当前GPU设置随机种子
torch.cuda.manual_seed_all(seed) # 为所有GPU设置随机种子
#os.environ['PYTHONHASHSEED'] = str(seed)
def get_optimizer(model, lr, weight_decay = 1e-4, fix_bert = False):
bert_params, task_params = [], []
size = 0
for name, params in model.named_parameters():
if "roberta" in name:
bert_params.append((name, params))
else:
task_params.append((name, params))
size += params.nelement()
# print("bert parameters")
# for name, params in bert_params:
# print('n: {}, shape: {}'.format(name, params.shape))
# print('*' * 150)
print("task parameters")
for name, params in task_params:
print('n: {}, shape: {}'.format(name, params.shape))
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
nobert_params = task_params
if fix_bert:
params = [
{"params": nobert_params, "weight_decay": weight_decay,"lr": 100 * lr},
]
else:
params = [
{"params": [p for n, p in bert_params if not any(nd in n for nd in no_decay)], "weight_decay": weight_decay, "lr": lr},
{"params": [p for n, p in bert_params if any(nd in n for nd in no_decay)], "weight_decay": 0.0, "lr": lr},
{
"params": [p for n, p in nobert_params],
"weight_decay": weight_decay,
"lr": 100*lr
# "lr": lr
},
]
optimizer = AdamW(params, correct_bias=False)
return optimizer
# setup_seed(31)
# kl = F.kl_div
roberta_pretrained_path = 'roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli'
train_model_name = 'example.pt'
#### hyperparameters ####
weight_kl = 1.2
windowsize = 2
layers = 2
max_seq_length = 128
model_specific = T2GV2_noEnt
###########################
num_epochs = 3
train_batch_size = 4 ################ old 16
dev_batch_size = 4
accumulation_steps = 2
plm_emd_dim = 1024
evaluation_steps = 1600
logging_steps = 10
feverous_score_first = True
#########################
use_gold = False
nei_aug = False
#########################
device = torch.device("cuda:0")
if not os.path.exists('checkpoint'):
os.makedirs('checkpoint')
if not os.path.exists('preprocessed'):
os.makedirs('preprocessed')
tokenizer = None
if tokenizer is None:
tokenizer = RobertaTokenizer.from_pretrained(roberta_pretrained_path)
tokenized_concat_claim_evi_list,tokenized_claim_evi_list, edge_index_list, edge_type_list, \
label_list,num_claim_evi_list,valididx_list,evi_word_cnt,gold_indi = \
preprocess_wt(
dev_retrieved_path, tokenizer,maxlength=max_seq_length,windowsize=windowsize)
dev_data = prepare_graph_data_word_level_attention(tokenized_concat_claim_evi_list,
tokenized_claim_evi_list, edge_index_list, edge_type_list,num_claim_evi_list,
label_list,valididx_list,evi_word_cnt,gold_indi)
dev_dataloader = DataLoader(dev_data, batch_size=dev_batch_size, shuffle=False)
if tokenizer is None:
tokenizer = RobertaTokenizer.from_pretrained(roberta_pretrained_path)
tokenized_concat_claim_evi_list,tokenized_claim_evi_list, edge_index_list, edge_type_list, \
label_list,num_claim_evi_list,valididx_list,evi_word_cnt,gold_indi = \
preprocess_wt(
train_retrieved_path,tokenizer,maxlength=max_seq_length,windowsize=windowsize)
train_data = prepare_graph_data_word_level_attention(tokenized_concat_claim_evi_list,
tokenized_claim_evi_list, edge_index_list, edge_type_list,
num_claim_evi_list, label_list,valididx_list,evi_word_cnt,gold_indi)
train_dataloader = DataLoader(train_data, batch_size=train_batch_size, shuffle=True)
plm_model = RobertaForSequenceClassification.from_pretrained(roberta_pretrained_path, num_labels=3, return_dict=True)
# initialize the model
model = model_specific(plm_model, plm_emd_dim, 512, 256, 3, 128, 3,layers=layers).to(device)
# optimizer = optim.Adam(model.parameters(),
# lr=1e-5,
# weight_decay=0)
optimizer = get_optimizer(model,lr=1e-5,weight_decay=1e-4,fix_bert=False)
num_training_steps = num_epochs * len(train_dataloader) // accumulation_steps
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer, num_warmup_steps=0.2*num_training_steps, num_training_steps=num_training_steps
)
def evaluate(model, dataloader, report_fine_grained_metric=True):
print('--------- dev Evaluation Start ---------')
map_verdict_to_index = {0:'NOT ENOUGH INFO', 1:'SUPPORTS', 2:'REFUTES'}
pred_label, pred_label_and_evi = [], []
model.eval()
for batch in dataloader:
batch = batch.to(device)
try:
prob,_ = model(batch.edge_index, batch.edge_type, batch.x, batch.num_claim_evi,batch.attn_mask, batch.valid_idx,batch.evi_word_cnt,batch.concat_token_ids,batch.concat_attn_mask)
except RuntimeError as e:
torch.cuda.empty_cache()
prob,_ = model(batch.edge_index, batch.edge_type, batch.x, batch.num_claim_evi,batch.attn_mask, batch.valid_idx,batch.evi_word_cnt,batch.concat_token_ids,batch.concat_attn_mask)
pred_label += list(prob.argmax(axis=-1).cpu().numpy())
pred_label = [map_verdict_to_index[i] for i in pred_label]
with jsonlines.open(dev_retrieved_path) as f:
for i, line in enumerate(f.iter()):
if i == 0:
continue
line['predicted_label'] = pred_label[i-1]
line['evidence'] = [el['content'] for el in line['evidence']]
for j in range(len(line['evidence'])):
line['evidence'][j]= [[el.split('_')[0], el.split('_')[1] if 'table_caption' not in el and 'header_cell' not in el else '_'.join(el.split('_')[1:3]), '_'.join(el.split('_')[2:]) if 'table_caption' not in el and 'header_cell' not in el else '_'.join(el.split('_')[3:])] for el in line['evidence'][j]]
line['predicted_evidence'] = [[el.split('_')[0], el.split('_')[1] if 'table_caption' not in el and 'header_cell' not in el else '_'.join(el.split('_')[1:3]), '_'.join(el.split('_')[2:]) if 'table_caption' not in el and 'header_cell' not in el else '_'.join(el.split('_')[3:])] for el in line['predicted_evidence']]
pred_label_and_evi.append(line)
print('{} predicted results'.format(len(pred_label)))
print('computing the scores...')
strict_score, label_accuracy, precision, recall, f1 = feverous_score(pred_label_and_evi)
if report_fine_grained_metric:
sup_correct, ref_correct, nei_correct = 0, 0, 0
sup_cnt, ref_cnt, nei_cnt = 0, 0, 0
for instance in pred_label_and_evi:
pred_label = instance["predicted_label"].upper()
gd_label = instance["label"].upper()
if pred_label == gd_label:
if gd_label == 'SUPPORTS':
sup_correct += 1
elif gd_label == 'REFUTES':
ref_correct += 1
elif gd_label == 'NOT ENOUGH INFO':
nei_correct += 1
if gd_label == 'SUPPORTS':
sup_cnt += 1
elif gd_label == 'REFUTES':
ref_cnt += 1
elif gd_label == 'NOT ENOUGH INFO':
nei_cnt += 1
print('Evaluation | SUP ACC: {:.4f} \t REF ACC: {:.4f} \t NEI ACC: {:.4f}'.format(sup_correct/sup_cnt, ref_correct/ref_cnt, nei_correct/nei_cnt))
return strict_score, label_accuracy
# TODO: add argument information to decide whether train now
# loss_fn = nn.NLLLoss(reduction='mean')
loss_fn = nn.NLLLoss()
loss_ad = nn.BCELoss()
print('------ Start Training! ------')
training_args = PrettyTable()
training_args.field_names = ['Total training steps', 'Batch size', 'Epochs', 'Accumulation steps']
training_args.add_row([num_training_steps, train_batch_size, num_epochs, accumulation_steps])
print(training_args)
early_stop = False
global_steps = 0
logging_loss = 0.
best_dev_feverous_score, best_dev_acc = 0., 0.
early_stop_cnt_la, early_stop_cnt_fs = 0, 0
for e in range(num_epochs):
print(len(train_dataloader))
for num, batch in enumerate(train_dataloader):
model.train()
batch = batch.to(device)
try:
prob,attention_list = model(batch.edge_index, batch.edge_type, batch.x, batch.num_claim_evi, batch.attn_mask, batch.valid_idx,batch.evi_word_cnt,batch.concat_token_ids,batch.concat_attn_mask)
loss = loss_fn(prob, batch.y)
aided_loss = 0
for at,gd in zip(attention_list,batch.gold_indicator):
# print('DEBUG',at,gd)
aided_loss += loss_ad(at,torch.tensor(gd).float().to(device))
aided_loss/=len(attention_list)
if num<5:
print('DEBUG info:',num,at,gd,aided_loss,loss)
loss += weight_kl*aided_loss
loss = loss / accumulation_steps
loss.backward()
logging_loss += loss.item()
except:
torch.cuda.empty_cache()
try:
prob,attention_list = model(batch.edge_index, batch.edge_type, batch.x, batch.num_claim_evi, batch.attn_mask, batch.valid_idx,batch.evi_word_cnt,batch.concat_token_ids,batch.concat_attn_mask)
loss = loss_fn(prob, batch.y)
aided_loss = 0
for at,gd in zip(attention_list,batch.gold_indicator):
aided_loss += loss_ad(at,torch.tensor(gd).float().to(device))
aided_loss/=len(attention_list)
loss += weight_kl*aided_loss
loss = loss / accumulation_steps
loss.backward()
logging_loss += loss.item()
except:
print('***escape one batch***',batch.evi_word_cnt)
if (num+1) % accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(filter(lambda p: p.requires_grad, model.parameters()), max_norm=5.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
global_steps += 1
if global_steps % evaluation_steps == 0:
strict_score, label_accuracy = evaluate(model, dev_dataloader, report_fine_grained_metric=True)
print('Evaluation | Global Step: {:d} \t FEVEROUS score: {:.4f} \t Label accuracy: {:.4f}'.format(global_steps, strict_score, label_accuracy))
if strict_score > best_dev_feverous_score:
best_dev_feverous_score = strict_score
early_stop_cnt_fs = 0
if feverous_score_first:
print('Save the best model so far...')
torch.save(model.state_dict(), train_model_name)
else:
early_stop_cnt_fs += 1
if label_accuracy > best_dev_acc:
best_dev_acc = label_accuracy
early_stop_cnt_la = 0
if not feverous_score_first:
print('Save the best model so far...')
torch.save(model.state_dict(), train_model_name)
else:
early_stop_cnt_la += 1
if feverous_score_first and early_stop_cnt_fs == 222212:
print('Current step: {:d} | Current Epoch: {:d}'.format(global_steps, e+1))
print('FEVEROUS score is not increased for 5 evaluation steps, force early stopping!')
early_stop = True
break
if not feverous_score_first and early_stop_cnt_la == 222212:
print('Current step: {:d} | Current Epoch: {:d}'.format(global_steps, e+1))
print('FEVEROUS score is not increased for 5 evaluation steps, force early stopping!')
early_stop = True
break
if global_steps % logging_steps == 0:
print('Epoch {:d} | Global step: {:d} \t Loss: {:.4f}'.format(e+1, global_steps, logging_loss / logging_steps))
logging_loss = 0.
if early_stop:
break