-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDecision_Tree_Classifier.py
40 lines (27 loc) · 1.13 KB
/
Decision_Tree_Classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
import pandas as pd
import csv
from sklearn.cross_validation import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn import tree
#with open('chess2.csv', 'rb') as csvfile:
#balance_data = csv.reader(csvfile, delimiter=' ', quotechar='|')
balance_data = pd.read_csv('chess2.csv', sep= ',', header= None)
print "Dataset Lenght:: ", len(balance_data)
print "Dataset Shape:: ", balance_data.shape
print "Dataset:: "
print balance_data.head(n=6)
X = balance_data.values[:, 0:35]
Y = balance_data.values[:,36]
X_train, X_test, y_train, y_test = train_test_split( X, Y, test_size = 0.094)
clf_gini = DecisionTreeClassifier(criterion = "gini", min_samples_leaf=2, max_features=35)
print clf_gini.fit(X_train, y_train)
clf_entropy = DecisionTreeClassifier(criterion = "entropy", min_samples_leaf=2)
print clf_entropy.fit(X_train, y_train)
y_pred = clf_gini.predict(X_test)
print y_pred
y_pred_en = clf_entropy.predict(X_test)
print y_pred_en
print "Accuracy is ", accuracy_score(y_test,y_pred)*100
print "Accuracy is ", accuracy_score(y_test,y_pred_en)*100