题目链接:https://leetcode-cn.com/problems/convert-sorted-list-to-binary-search-tree/
给定一个单链表,其中的元素按升序排序,将其转换为高度平衡的二叉搜索树。
本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。
示例 :
给定的有序链表: [-10, -3, 0, 5, 9],
一个可能的答案是:[0, -3, 9, -10, null, 5], 它可以表示下面这个高度平衡二叉搜索树:
0
/ \
-3 9
/ /
-10 5
- 统计长度,生成节点,放入数组,则中点就是根节点
- 使用二分法不断寻找中点,生成二叉树
/**
* Definition for singly-linked list.
* function ListNode(val, next) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
*/
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {ListNode} head
* @return {TreeNode}
*/
var sortedListToBST = function(head) {
const BET_ARR = []
while(head){
let node = new TreeNode(head.val);
head = head.next;
BET_ARR.push(node)
}
const helper = function(left, right) {
if(left > right){
return null
}
let mid = (left + right) >> 1;
let root = BET_ARR[mid];
root.left = helper(left, mid - 1);
root.right = helper(mid + 1, right);
return root
}
return helper(0, BET_ARR.length - 1)
};
- 与思路1的区别在于这个方法不使用数组缓存节点,也不提前生成几点,在遍历过程中生成,也是二分法分片进行处理
- 首先计算链表长度,用于计算中点,进行分治,对每次递归进行中序遍历,即先给节点左树赋值,再给节点赋值,最后给右树赋值
/**
* Definition for singly-linked list.
* function ListNode(val, next) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
*/
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {ListNode} head
* @return {TreeNode}
*/
var sortedListToBST = function(head) {
let head_cache = head
// 统计长度
let length = 0;
while (head != null) {
++length;
head = head.next;
}
// 传入左右
const helper = function(left, right) {
if(left > right){
return null
}
const mid = (left + right) >> 1;
let root = new TreeNode()
root.left = helper(left, mid - 1);
root.val = head_cache.val;
head_cache = head_cache.next;
root.right = helper(mid + 1, right);
return root
}
return helper(0, length - 1)
};
- 二叉搜索树,中序遍历!!!!!
- 二叉搜索树,中序遍历!!!!!
- 二叉搜索树,中序遍历!!!!!