-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_recog.py
113 lines (85 loc) · 3.74 KB
/
face_recog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import numpy as np
import cv2, os
import matplotlib.pyplot as plt
import face_recognition
cap = cv2.VideoCapture(0)
def convertToRGB(image):
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
known_face_encodings = []
known_face_names = []
user_appeared = []
root = "./images/"
for filename in os.listdir(root):
if filename.endswith('.jpg' or '.png'):
try:
print(filename)
path = os.path.join(root, filename)
filter_image = face_recognition.load_image_file(path)
filter_face_encoding = face_recognition.face_encodings(filter_image, num_jitters=20)
known_face_encodings.append(filter_face_encoding[0])
known_face_names.append(filename)
except:
print("An exception occurred : " + filename)
# print(known_face_encodings)
print(known_face_names)
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
#Live Camera Code
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
# Our operations on the frame come here
# gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
haar_cascade_face = cv2.CascadeClassifier('data/haarcascades/haarcascade_frontalface_alt2.xml')
# Face detection
faces_rects = haar_cascade_face.detectMultiScale(frame, scaleFactor=1.2, minNeighbors=5)
# Let us print the no. of faces found
print('Faces found: ', len(faces_rects))
# Our next step is to loop over all the co-ordinates it returned and draw rectangles around them using Open CV.We will be drawing a green rectangle with thicknessof 2
for (x, y, w, h) in faces_rects:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
k = cv2.waitKey(1)
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# If a match was found in known_face_encodings, just use the first one.
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
print(name)
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 0), cv2.FILLED)
font = cv2.FONT_HERSHEY_COMPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (0, 255, 0), 1)
# Display the resulting frame
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()