-
Notifications
You must be signed in to change notification settings - Fork 4
/
myFolderImagenet.py
105 lines (85 loc) · 3.05 KB
/
myFolderImagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import torch.utils.data as data
import numpy as np
from PIL import Image
import os
import os.path
# FROM https://discuss.pytorch.org/t/dataloader-filenames-in-each-batch/4212/2
# and https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py#L122
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm']
import warnings
import pdb
def is_image_file(filename):
"""Checks if a file is an image.
Args:
filename (string): path to a file
Returns:
bool: True if the filename ends with a known image extension
"""
filename_lower = filename.lower()
return any(filename_lower.endswith(ext) for ext in IMG_EXTENSIONS)
def find_classes(dir):
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def make_dataset(dir):
images = []
dir = os.path.expanduser(dir)
for root, _, fnames in sorted(os.walk(dir)):
for fname in sorted(fnames):
if is_image_file(fname):
path = os.path.join(root, fname)
item = (path, 0)
images.append(item)
return images
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
def accimage_loader(path):
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def default_loader(path):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path)
class MyImageFolder(data.Dataset):
def __init__(self, root, transform=None, target_transform=None,
loader=default_loader):
imgs = make_dataset(root)
if len(imgs) == 0:
raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
self.root = root
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = loader
self.n_images = len(imgs)
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target, path, index) where target is class_index of the target class.
"""
path, target = self.imgs[index]
warnings.filterwarnings('error')
try:
img = self.loader(path)
except:
return -1, -1, path, index
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
return "target is 0 for everybody"
return img, target, path, index
def __len__(self):
return len(self.imgs)