(19 July 2023) The T2T reference genome (chm13v2.0.fa
) has now been added to the list of supported references.
(10 June 2019) If you work with CRAM files and receive error messages like Unable to fetch reference #5 28687068..28707018
, the reason is that samtools view
needs to know which reference genome was used to create your CRAM file. Solution: use the switch --samtools_T
to specify a suitable reference genome file. Example: ./HLA-LA.pl --BAM NA12878.alt_bwamem_GRCh38DH.20150706.CEU.illumina_platinum_ped.cram --graph PRG_MHC_GRCh38_withIMGT --sampleID NA12878 --samtools_T /path/to/GRCh38_full_analysis_set_plus_decoy_hla.fa
. You need a fresh pull from GitHub for this to work, the bioconda version has not been updated yet.
(24 February 2019) HLA*LA can now be installed via bioconda! conda install hla-la
!
(07 January 2019) The tool is now called HLA*LA. To preserve backward compatibility, we've created a symlink HLA-LA.pl
pointing to HLA-LA.pl
.
(21 March 2018) We have added an experimental mode for long-read typing (see below) and support for HLA typing of assemblies (see HLA-ASM.md).
(26 September 2017) I've added an additional B38 reference.
(22 July 2017) There is a now a 316MB "NA12878 mini" CRAM test file for the impatient. See below for the download link.
(18 April 2017) The main executable is now called HLA-LA.pl
(instead of inferHLATypes.pl). Also, it is now easier to support a central cluster installation of HLA*LA (see section "Cluster installation" below). Before pulling the update, rename your local copy of the paths.ini
file, then do a git pull
, and then copy the paths from your local copy into the freshly pulled paths.ini
(but be careful not to delete the new workingDir
entry in the freshly pulled paths.ini
).
(05 April 2017) I've added two new B37 reference files and enabled genotyping for more HLA loci. This is still experimental. In particular, treat calls for HLA-DRB3/4 with caution. The model does not try to estimate copy number for these genes!
(03 April 2017) I've received the first user requests for the inclusion of additional references (UCSC hg19 in this case). Also, the pipeline currently uses an old version of Picard. I plan to update the pipeline to a recent version of Picard, and include additional references in the database as well. Let me know if there are further issues that need to be addressed!
HLA*LA carries out HLA typing based on a population reference graph and employs a new linear projection method to align reads to the graph. See the publication and this blog post.
HLA*LA is faster and less resource-intensive than HLA*PRG.
If you're using bioconda, a simple conda install hla-la
should be sufficient to install HLA*LA and all dependencies.
Note that you will still have to download the data packages and index the graph; the required commands will be shown at the end of the bioconda installation process.
g++ with support for C++11 (e.g. 4.7.2)
Boost >= 1.59
Bamtools (now tested with 2.5.1 -- the makefile also contains instructions for older versions)
libz
bwa >= 0.7.12
samtools >= 1.3
picard
Create a directory structure for HLA*LA:
mkdir HLA-LA HLA-LA/bin HLA-LA/src HLA-LA/obj HLA-LA/temp HLA-LA/working HLA-LA/graphs
Clone this repository into HLA-LA/src:
cd HLA-LA/src; git clone https://github.com/DiltheyLab/HLA-LA.git .
Compile: modify the paths to libraries and includes in the makefile and then
make all
Instead of modifying the makefile, you can also specify paths for Boost and bamtools via the command line, like so:
make all BOOST_PATH=/data/projects/phillippy/software/boost_1_60_0 BAMTOOLS_PATH=/data/projects/phillippy/software/bamtools
(This will then use/include the files in $BOOST_PATH/include
, $BOOST_PATH/lib
, $BAMTOOLS_PATH/include
, $BAMTOOLS_PATH/lib
and $BAMTOOLS_PATH/src
- if your local installations have a different structure, edit the makefile directly.)
If you receive error messages, see the next section ("Debugging issues with bamtools and boost").
Test that an executable has been created by executing
../bin/HLA-LA --action testBinary
... and you should the following message:
HLA*LA binary functional!
Any other message indicates that there is a problem - if you receive errors about shared libraries, modify your LD_LIBRARY_PATH
accordingly.
If you receive messages about missing symbols or files from the Boost and/or bamtools libraries, carry out the following steps.
First, make sure that your bamtools and Boost installations exhibit a standard directory structure. Specifically, this means:
- For Boost: if you specified
/path/to/boost
asBOOST_PATH
(either via the command line or directly in the makefile), the paths/path/to/boost/include
and/path/to/boost/lib
should exist on your system. Furthermore,/path/to/boost/lib
should contain the required library files (boost_system, boost_filesystem, boost_random, boost_serialization); on a standard Linux, this would typically translate into the presence oflib
+ name +.a
files in this folder (e.g.: for library boost_system, on a standard Linux there should be alibboost_system.a
file). - For bamtools: if you specified
/path/to/bamtools/
asBAMTOOLS_PATH
(either via the command line or directly in the makefile), the paths/path/to/bamtools/include/bamtools
,/path/to/bamtools/src
and/path/to/bamtools/lib64
should exist on your system. If/path/to/bamtools/lib64
does NOT exist on your system, but/path/to/bamtools/lib
does, edit line 11 of the makefile accordingly. Furthermore, the specified bamtools library directory (either/path/to/bamtools/lib64
or/path/to/bamtools/lib
) should contain a bamtools library file. On most Linux machines, this is equivalent to there being alibbamtools.a
file.
If your directory structure looks good and you have verified the existence of the required library files, but continue to receive error messages about missing files or missing symbols during the linking process, you can try directly including the required files. To do so, for the library file you want to include directly, identify the corresponding -lLIBRARY
switch in line 14 of the makefile, and substitute it with the path to the corresponding library file.
For example, if you want to directly include the bamtools library file, remove -lbamtools
from line 14, and substitute it with /path/to/bamtools/lib64/libbamtools.a
.
Download the data package (http://www.well.ox.ac.uk/downloads/PRG_MHC_GRCh38_withIMGT.tar.gz, 2.3G) and extract it into HLA-PRG/graphs
, i.e.
cd HLA-LA/graphs
wget http://www.well.ox.ac.uk/downloads/PRG_MHC_GRCh38_withIMGT.tar.gz
tar -xvzf PRG_MHC_GRCh38_withIMGT.tar.gz
md5sum for PRG_MHC_GRCh38_withIMGT.tar.gz is 525a8aa0c7f357bf29fe2c75ef1d477d.
HLA*LA makes use of bwa, samtools and picard for various steps of the inference process. It is recommended to manually specify the paths to the right executables in the file HLA-LA/src/paths.ini
- the cloned repository will contain an example file, and the format should be self-explanatory.
Note that you can specify multiple alternatives per program, for example for running HLA*LA in a heterogeneous environment (HLA*LA will always use the first alternative present, and also try a which
if none of the specified alternatives are present).
In cluster environments, you might also want to modify the workingDir
entry in the paths.ini
file. workingDir
only accepts one value (even if you specify multiple values via a comma-separated list, only the first value will be used), and you can use the string $HLA-LA-DIR
to refer to the HLA-LA installation directory. If you delete the workingDir
line, users have to pass a working directory via the --workingDir argument.
Finally, pre-compute the graph index structure - this can take a few hours and might take up to 40G of memory:
../bin/HLA-LA --action prepareGraph --PRG_graph_dir ../graphs/PRG_MHC_GRCh38_withIMGT
Download and index the "NA12878 mini" test CRAM file from https://www.dropbox.com/s/xr99u3vqaimk4vo/NA12878.mini.cram?dl=0 (md5sum 45d1769ffed71418571c9a2414465a12; 316M), rename the file to remove the dl=0
suffix (mv NA12878.mini.cram?dl=0 NA12878.mini.cram
), run HLA*LA (see below), and compare the output with https://github.com/DiltheyLab/HLA-LA/blob/master/NA12878_example_output_G.txt.
Commands:
samtools index NA12878.mini.cram
./HLA-LA.pl --BAM NA12878.mini.cram --graph PRG_MHC_GRCh38_withIMGT --sampleID NA12878 --maxThreads 7
All allele calls should agree, and Q
should be 1 for all calls.
./HLA-LA.pl --BAM /path/to/indexed.bam --graph PRG_MHC_GRCh38_withIMGT --sampleID $mySampleID --maxThreads 7
A few notes:
- All output goes into
../working/$mySampleID
(where$mySampleID
is a variable). Use a unique sample ID for each sample. - If you want the output to go into a different directory, you can also pass the
--workingDir
argument. HLA-LA will create a separate sub-directory (the name of which will be equal to--sampleID
) in the--workingDir
directory. - You can also specify a CRAM file.
- Both CRAM and BAM files need to be indexed.
- If you experience with CRAM files, try specifying a suitable reference genome file via the command line switch
--samtools_T
. - Modify
--maxThreads 7
according to your needs. - HLA*LA tries to automatically figure out the right reference genome for your BAM. It compares the index of your BAM/CRAM with a database of known references, that contains the regions relevant for HLA typing. Reads from these regions are extracted and processed. We currently have support for various versions of B37 and for the 1000 Genomes GRCh38 reference. If the program complains that it cannot find a compatible entry in its internal database, please get in touch - adding more references is easy (see below), and we want to support as wide a range of popular references as possible!
- You do not need to modify the utilized graph depending on whether your BAM uses GRCh37 or GRCh38.
If you want to create a central installation of HLA-LA, you will probably want to delete the workingDir
entry from the paths.ini
file -- this forces users to specify a working directory via the command line and avoids shared access to the same working directory.
If you use CRAM input, make sure that your CRAM file contains all of the original sample reads, including the unmapped ones (which are typically enriched for HLA-derived reads). We've sometimes come across CRAM files for which this hasn't been the case; and the resulting HLA calls were not very good (the coverage statistics in the call file are sometimes, but now always, indicative of such problems).
f you work with CRAM files and receive error messages like Unable to fetch reference #5 28687068..28707018
, the reason is that samtools view
needs to know which reference genome was used to create your CRAM file. Solution: use the switch --samtools_T
to specify a suitable reference genome file. Example: ./HLA-LA.pl --BAM NA12878.alt_bwamem_GRCh38DH.20150706.CEU.illumina_platinum_ped.cram --graph PRG_MHC_GRCh38_withIMGT --sampleID NA12878 --samtools_T /path/to/GRCh38_full_analysis_set_plus_decoy_hla.fa
.
If you want to carry out genotyping from a long-reads BAM, please specify the parameter --longReads ont2d
(for Oxford Nanopore reads) or --longReads pacbio
(for PacBio reads). Of note, typing will still be carried out at G group resolution. This feature is experimental; accuracy may not match short-read-based typing.
HLA typing of assemblies is implemented as a separate module. See HLA-ASM.md for details.
For each sample with ID $mySampleID, the main output file is ../working/$mySampleID/hla/R1_bestguess_G.txt. Columns:
Locus
: Locus (HLA-A, HLA-B, etc..).Chromosome
: 1 or 2. Calls are not phased across loci!Allele
: Called allele at G group resolution (exons 2/3 for class I genes, exon 2 for class II genes).Q1
: Quality score (~ probability), between 0 and 1.Q2
: Ignore.AverageCoverage
: Locus average coverage.CoverageFirstDecile
: First decile coverage.MinimumCoverage
: Minimum column coverage for locus.proportionkMersCovered
: Proportion k-mers belonging to the called allele observed in locus input data.LocusAvgColumnError
: Average alignment error for this locus.NColumns_UnaccountedAllele_fGT0.2
: Number of columns with evidence for the presence of alleles not accounted for by the called alleles.perfectG
: Perfect translation from HLA*PRG:LA call to G grop resolution? (1 = Yes).
Checking AverageCoverage
for each sample is an important sanity check - AverageCoverage
fluctuates between samples and loci, but its expectation depends on average whole-genome coverage. Also, plotting AverageCoverage
for all samples and all loci in your cohort is a good idea!
There are three additional quality indicators: Q1
, proportionkMersCovered
, NColumns_UnaccountedAllele_fGT0.2
. Q1
is usually equal to or very close to 1. proportionkMersCovered
should always be 1, at least for high-coverage Illumina samples. NColumns_UnaccountedAllele_fGT0.2
is also usually 0, but NColumns_UnaccountedAllele_fGT0.2
!= 0 is not a reliable indicator for false calls. Deviations from the "usual" values sometimes indicate the presence of novel alleles. See the original HLA*PRG paper, in which we discussed the predictive value of these indicators in some detail.
If perfectG
!= 1, you might want to check ../working/$mySampleID/hla/R1_bestguess.txt
, which contains the un-translated output from the internal model of the algorithm.
Also, ../working/$mySampleID/reads_per_level.txt
gives coverage across the MHC - the coordinate system is that of the PRG itself, i.e. it is not identical to normal genomic coordinates. The file also contains string identifiers for each level, indicating e.g. gene names. We haven't tested the output of this file in any way, but it might be interesting for some applications.
Treat calls for HLA-DRB3/4 with caution. The model does not try to estimate copy number for these genes, so you'll end up with calls for genes that are not present (in interpreting calls for the DRB orthologs, it helps to take into account HLA-DRB1 genotype, which, generally speaking and via linkage, will tell you how many HLA-DRB3/4/5 copies to expect).
Whenever you apply HLA*LA to a BAM file, the algorithm compares the reference genome of the BAM (contig identifiers and contig lengths, using samtools idxstats
) to a database of known references. This database tells the algorithm which BAM regions are relevant for HLA typing; it will extract reads from these regions and use them for typing.
If, however, your utilized reference genome is not in the internal database (to re-iterate this point: we're looking for exact matches in terms of contig identifiers and contig lengths!), you will receive an error message.
The easiest thing to do is then to send the output from samtools idxstats to us, and we'll add your reference to the database.
You can also, however, modify the database yourself:
- Each graph has its own reference database. Typically your reference directory is
HLA-LA/graphs/PRG_MHC_GRCh38_withIMGT/knownReferences
. - Each file in this directory represents one reference. The files are tab-separated with header lines and each line shall have the full number of fields (even if they are empty). The required fields are:
- contigID: Name of the contig
- contigLength: Length of the contig
- ExtractCompleteContig: Requires a value, either 0 (no) or 1 (yes)
- PartialExtraction_Start: Mututally incompatible with ExtractCompleteContig = 1 - if partial extraction, start of the extraction (1-based coordinates).
- PartialExtraction_Stop: Stop coordinate for partial extraction (see PartialExtraction_Start)
- For the MHC from chromosome 6, we typically use partial extraction with the MHC coordinates.
- MHC ALTs and HLA genomic sequences (if any) are usually completely extracted.
- Unmapped reads should usually be extracted. Use '*' (without quotes) as contigID, 0 for contigLength, and 1 for ExtractCompleteContig.
If you create your own extraction files, have a look at the existing files first - they will give you a good example to work from.
Important: if you miss regions, the reads aligned to these are lost for the inference process - make sure to catch all alternative MHC contigs and all HLA references!
Please cite the HLA*LA publication.