-
Notifications
You must be signed in to change notification settings - Fork 74
/
triangle.py
56 lines (40 loc) · 1.35 KB
/
triangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""
A zero-indexed array A consisting of N integers is given.
A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
A[P] + A[Q] > A[R],
A[Q] + A[R] > A[P],
A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5
A[3] = 1 A[4] = 8 A[5] = 20
Triplet (0, 2, 4) is triangular.
Write a function:
def solution(A)
that, given a zero-indexed array A consisting of N integers,
returns 1 if there exists a triangular triplet for this array and
returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5
A[3] = 1 A[4] = 8 A[5] = 20
the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5
A[3] = 1
the function should return 0.
Assume that:
N is an integer within the range [0..100,000];
each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
Complexity:
expected worst-case time complexity is O(N*log(N));
expected worst-case space complexity is O(N),
beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
"""
def solution(A):
A_len = len(A)
if A_len < 3:
return 0
A.sort()
for index in range(0, A_len - 2):
if A[index] + A[index + 1] > A[index + 2]:
return 1
return 0