-
Notifications
You must be signed in to change notification settings - Fork 2
/
diffusers.py
352 lines (278 loc) · 16.2 KB
/
diffusers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import os
from functools import wraps, cache
import torch
import diffusers # pylint: disable=import-error
from diffusers.models.attention_processor import Attention
# pylint: disable=protected-access, missing-function-docstring, line-too-long
device_supports_fp64 = torch.xpu.has_fp64_dtype() if hasattr(torch.xpu, "has_fp64_dtype") else torch.xpu.get_device_properties("xpu").has_fp64
attention_slice_rate = float(os.environ.get('IPEX_ATTENTION_SLICE_RATE', 4))
# Diffusers FreeU
# Diffusers is imported before ipex hijacks so fourier_filter needs hijacking too
original_fourier_filter = diffusers.utils.torch_utils.fourier_filter
@wraps(diffusers.utils.torch_utils.fourier_filter)
def fourier_filter(x_in, threshold, scale):
return_dtype = x_in.dtype
return original_fourier_filter(x_in.to(dtype=torch.float32), threshold, scale).to(dtype=return_dtype)
# fp64 error
class FluxPosEmbed(torch.nn.Module):
def __init__(self, theta: int, axes_dim):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: torch.Tensor) -> torch.Tensor:
n_axes = ids.shape[-1]
cos_out = []
sin_out = []
pos = ids.float()
for i in range(n_axes):
cos, sin = diffusers.models.embeddings.get_1d_rotary_pos_embed(
self.axes_dim[i],
pos[:, i],
theta=self.theta,
repeat_interleave_real=True,
use_real=True,
freqs_dtype=torch.float32,
)
cos_out.append(cos)
sin_out.append(sin)
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
return freqs_cos, freqs_sin
@cache
def find_slice_size(slice_size, slice_block_size):
while (slice_size * slice_block_size) > attention_slice_rate:
slice_size = slice_size // 2
if slice_size <= 1:
slice_size = 1
break
return slice_size
@cache
def find_attention_slice_sizes(query_shape, query_element_size, query_device_type, slice_size=None):
if len(query_shape) == 3:
batch_size_attention, query_tokens, shape_three = query_shape
shape_four = 1
else:
batch_size_attention, query_tokens, shape_three, shape_four = query_shape
if slice_size is not None:
batch_size_attention = slice_size
slice_block_size = query_tokens * shape_three * shape_four / 1024 / 1024 * query_element_size
block_size = batch_size_attention * slice_block_size
split_slice_size = batch_size_attention
split_2_slice_size = query_tokens
split_3_slice_size = shape_three
do_split = False
do_split_2 = False
do_split_3 = False
if query_device_type != "xpu":
return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size
if block_size > attention_slice_rate:
do_split = True
split_slice_size = find_slice_size(split_slice_size, slice_block_size)
if split_slice_size * slice_block_size > attention_slice_rate:
slice_2_block_size = split_slice_size * shape_three * shape_four / 1024 / 1024 * query_element_size
do_split_2 = True
split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size)
if split_2_slice_size * slice_2_block_size > attention_slice_rate:
slice_3_block_size = split_slice_size * split_2_slice_size * shape_four / 1024 / 1024 * query_element_size
do_split_3 = True
split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size)
return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size
class SlicedAttnProcessor: # pylint: disable=too-few-public-methods
r"""
Processor for implementing sliced attention.
Args:
slice_size (`int`, *optional*):
The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
`attention_head_dim` must be a multiple of the `slice_size`.
"""
def __init__(self, slice_size):
self.slice_size = slice_size
def __call__(self, attn: Attention, hidden_states: torch.Tensor,
encoder_hidden_states=None, attention_mask=None) -> torch.Tensor: # pylint: disable=too-many-statements, too-many-locals, too-many-branches
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
dim = query.shape[-1]
query = attn.head_to_batch_dim(query)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
batch_size_attention, query_tokens, shape_three = query.shape
hidden_states = torch.zeros(
(batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
)
####################################################################
# ARC GPUs can't allocate more than 4GB to a single block, Slice it:
_, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_attention_slice_sizes(query.shape, query.element_size(), query.device.type, slice_size=self.slice_size)
for i in range(batch_size_attention // split_slice_size):
start_idx = i * split_slice_size
end_idx = (i + 1) * split_slice_size
if do_split_2:
for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name
start_idx_2 = i2 * split_2_slice_size
end_idx_2 = (i2 + 1) * split_2_slice_size
if do_split_3:
for i3 in range(shape_three // split_3_slice_size): # pylint: disable=invalid-name
start_idx_3 = i3 * split_3_slice_size
end_idx_3 = (i3 + 1) * split_3_slice_size
query_slice = query[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3]
key_slice = key[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3]
attn_mask_slice = attention_mask[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
del query_slice
del key_slice
del attn_mask_slice
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3])
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = attn_slice
del attn_slice
else:
query_slice = query[start_idx:end_idx, start_idx_2:end_idx_2]
key_slice = key[start_idx:end_idx, start_idx_2:end_idx_2]
attn_mask_slice = attention_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
del query_slice
del key_slice
del attn_mask_slice
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx, start_idx_2:end_idx_2])
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = attn_slice
del attn_slice
torch.xpu.synchronize(query.device)
else:
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
del query_slice
del key_slice
del attn_mask_slice
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
del attn_slice
####################################################################
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class AttnProcessor:
r"""
Default processor for performing attention-related computations.
"""
def __call__(self, attn, hidden_states: torch.Tensor, encoder_hidden_states=None, attention_mask=None,
temb=None, *args, **kwargs) -> torch.Tensor: # pylint: disable=too-many-statements, too-many-locals, too-many-branches
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
####################################################################
# ARC GPUs can't allocate more than 4GB to a single block, Slice it:
batch_size_attention, query_tokens, shape_three = query.shape[0], query.shape[1], query.shape[2]
hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype)
do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_attention_slice_sizes(query.shape, query.element_size(), query.device.type)
if do_split:
for i in range(batch_size_attention // split_slice_size):
start_idx = i * split_slice_size
end_idx = (i + 1) * split_slice_size
if do_split_2:
for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name
start_idx_2 = i2 * split_2_slice_size
end_idx_2 = (i2 + 1) * split_2_slice_size
if do_split_3:
for i3 in range(shape_three // split_3_slice_size): # pylint: disable=invalid-name
start_idx_3 = i3 * split_3_slice_size
end_idx_3 = (i3 + 1) * split_3_slice_size
query_slice = query[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3]
key_slice = key[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3]
attn_mask_slice = attention_mask[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
del query_slice
del key_slice
del attn_mask_slice
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3])
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = attn_slice
del attn_slice
else:
query_slice = query[start_idx:end_idx, start_idx_2:end_idx_2]
key_slice = key[start_idx:end_idx, start_idx_2:end_idx_2]
attn_mask_slice = attention_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
del query_slice
del key_slice
del attn_mask_slice
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx, start_idx_2:end_idx_2])
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = attn_slice
del attn_slice
else:
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
del query_slice
del key_slice
del attn_mask_slice
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
del attn_slice
torch.xpu.synchronize(query.device)
else:
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
####################################################################
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def ipex_diffusers():
diffusers.utils.torch_utils.fourier_filter = fourier_filter
#ARC GPUs can't allocate more than 4GB to a single block:
if not device_supports_fp64 or os.environ.get('IPEX_FORCE_ATTENTION_SLICE', None) is not None:
diffusers.models.attention_processor.SlicedAttnProcessor = SlicedAttnProcessor
diffusers.models.attention_processor.AttnProcessor = AttnProcessor
if not device_supports_fp64:
diffusers.models.embeddings.FluxPosEmbed = FluxPosEmbed