forked from RjDuan/AdvCam-Hide-Adv-with-Natural-Styles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphysical_adaption_utils.py
127 lines (104 loc) · 5.81 KB
/
physical_adaption_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
import tensorflow as tf
from PIL import Image
import os
import math
class Physical_Adaptor():
def __init__(self,args, content_seg,content_image, input_image,content_width, content_height):
tf_content_seg = tf.constant(content_seg)
tf_reverse_content_seg = tf.constant(1- content_seg)
masked_content = tf.multiply(tf.constant(content_image),tf_reverse_content_seg)
masked_style =tf.multiply(input_image,tf_content_seg)
self.transformed_image = tf.add(masked_content ,masked_style)
self.background = tf.placeholder(tf.float32, (None,content_height,content_width,3))
self.img_with_bg = self.img_random_overlay(self.background,tf_content_seg,content_width, self.transformed_image)
self.img_with_bg = tf.clip_by_value(self.img_with_bg, 0.0 ,255.0)
self.resized_img = tf.image.resize_images(self.img_with_bg, (224,224))
self.bg_path = args.background_path
def _transform_vector(self, width, x_shift, y_shift, im_scale, rot_in_degrees):
"""
If one row of transforms is [a0, a1, a2, b0, b1, b2, c0, c1],
then it maps the output point (x, y) to a transformed input point
(x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k),
where k = c0 x + c1 y + 1.
The transforms are inverted compared to the transform mapping input points to output points.
"""
rot = float(rot_in_degrees) / 90. * (math.pi / 2)
# Standard rotation matrix
# (use negative rot because tf.contrib.image.transform will do the inverse)
rot_matrix = np.array([[math.cos(-rot), -math.sin(-rot)], [math.sin(-rot), math.cos(-rot)]])
# Scale it
# (use inverse scale because tf.contrib.image.transform will do the inverse)
inv_scale = 1. / im_scale
xform_matrix = rot_matrix * inv_scale
a0, a1 = xform_matrix[0]
b0, b1 = xform_matrix[1]
# At this point, the image will have been rotated around the top left corner,
# rather than around the center of the image.
#
# To fix this, we will see where the center of the image got sent by our transform,
# and then undo that as part of the translation we apply.
x_origin = float(width) / 2
y_origin = float(width) / 2
x_origin_shifted, y_origin_shifted = np.matmul(xform_matrix, np.array([x_origin, y_origin]), )
x_origin_delta = x_origin - x_origin_shifted
y_origin_delta = y_origin - y_origin_shifted
# Combine our desired shifts with the rotation-induced undesirable shift
a2 = x_origin_delta - (x_shift / (2 * im_scale))
b2 = y_origin_delta - (y_shift / (2 * im_scale))
# Return these values in the order that tf.contrib.image.transform expects
return np.array([a0, a1, a2, b0, b1, b2, 0, 0]).astype(np.float32)
def _random_transformation(self, min_scale, width, max_rotation):
"""Random resize and rotation.
Arguments:
min_scale {float32} -- Minimize scale of adv compared to background (supposed the scale of background as 1)
width {float32} -- Width of adv.
max_rotation {float32} -- Max rotation degree of adv.
"""
im_scale = np.random.uniform(low=min_scale, high=0.6)
padding_after_scaling = (1 - im_scale) * width
x_delta = np.random.uniform(-padding_after_scaling, padding_after_scaling)
y_delta = np.random.uniform(-padding_after_scaling, padding_after_scaling)
rot = np.random.uniform(-max_rotation, max_rotation)
return self._transform_vector(width,
x_shift=x_delta,
y_shift=y_delta,
im_scale=im_scale,
rot_in_degrees=rot)
def select_random_background(self, content_height, content_width):
""""
The function return a random background from specified path.
"""
# bg_dic = {'t-shirt':'./background/t-shirt','traffic': './physical-attack-data/background/traffic_bg','banana':'./physical-attack-data/background/banana'}
files = os.listdir(self.bg_path)
rand_num = np.random.randint(0,len(files ))
file_name = os.path.join(self.bg_path,files[rand_num])
bg = np.array(Image.open(file_name).convert("RGB").resize((content_height,content_width)), dtype=np.float32)
bg = bg
bg = np.expand_dims(bg,0)
return bg
def img_random_overlay(self, bg, img_mask,width,adv_img,min_scale=0.4, max_rotation = 25):
"""adv with background
Arguments:
bg {tensor} -- selected background
img_mask {tensor} -- Rotation and resize
width {float32} -- Width of img
adv {tensor} -- adversarial_img
Keyword Arguments:
min_scale {float} -- [description] (default: {0.4})
max_rotation {int} -- [description] (default: {25})
Returns:
[type] -- [description]
"""
bg = tf.squeeze(bg,[0])
adv_img = tf.squeeze(adv_img,[0])
random_xform_vector = tf.py_func(self._random_transformation, [min_scale, width, max_rotation], tf.float32)
random_xform_vector.set_shape([8])
output = tf.contrib.image.transform(adv_img, random_xform_vector, "BILINEAR")
input_mask = tf.contrib.image.transform(img_mask , random_xform_vector, "BILINEAR")
background_mask = 1-input_mask
input_with_background = tf.add(tf.multiply(background_mask, bg), tf.multiply(input_mask , output))
#For simulatinng lightnness change
color_shift_input = input_with_background + input_with_background * tf.constant(np.random.uniform(-0.3,0.3))
img_with_bg = tf.expand_dims(color_shift_input,0)
return img_with_bg