forked from rozumden/DeFMO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
315 lines (273 loc) · 8.95 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import numpy as np
import math
from main_settings import *
from skimage import measure
import skimage.transform
from scipy import signal
from skimage.measure import label, regionprops
# from skimage.measure import compare_ssim as ssim
import skimage.metrics as metrics
import scipy.misc
import cv2
import pdb
def fmo_detect(I,B):
## simulate FMO detector -> find approximate location of FMO
dI = (np.sum(np.abs(I-B),2) > 0.05).astype(float)
labeled = label(dI)
regions = regionprops(labeled)
ind = -1
maxsol = 0
for ki in range(len(regions)):
if regions[ki].area > 100 and regions[ki].area < 0.01*np.prod(dI.shape):
if regions[ki].solidity > maxsol:
ind = ki
maxsol = regions[ki].solidity
if ind == -1:
return [], 0
bbox = np.array(regions[ind].bbox).astype(int)
return bbox, regions[ind].minor_axis_length
def imread(name):
img = cv2.imread(name,cv2.IMREAD_UNCHANGED)
if img.shape[2] == 3:
return img[:,:,[2,1,0]]/255
else:
return img[:,:,[2,1,0,3]]/65535
def imwrite(im, name = tmp_folder + 'tmp.png'):
im[im<0]=0
im[im>1]=1
cv2.imwrite(name, im[:,:,[2,1,0]]*255)
def fmo_detect_maxarea(I,B,maxarea = 0.1):
## simulate FMO detector -> find approximate location of FMO
dI = (np.sum(np.abs(I-B),2) > maxarea).astype(float)
labeled = label(dI)
regions = regionprops(labeled)
ind = -1
maxarea = 0
for ki in range(len(regions)):
if regions[ki].area > maxarea:
ind = ki
maxarea = regions[ki].area
if ind == -1:
return [], 0
bbox = np.array(regions[ind].bbox).astype(int)
return bbox, regions[ind].minor_axis_length
def fmo_detect_hs(gt_hs,B):
dI = (np.sum((np.sum(np.abs(gt_hs-B[:,:,:,None]),2) > 0.1),2) > 0.5).astype(float)
labeled = label(dI)
regions = regionprops(labeled)
ind = -1
maxarea = 0
for ki in range(len(regions)):
if regions[ki].area > maxarea:
ind = ki
maxarea = regions[ki].area
if ind == -1:
return [], 0
bbox = np.array(regions[ind].bbox).astype(int)
return bbox, regions[ind].minor_axis_length
def bbox_detect_hs(gt_hs,B):
dI = (np.sum(np.abs(gt_hs-B),2) > 0.1).astype(float)
labeled = label(dI)
regions = regionprops(labeled)
ind = -1
maxarea = 0
for ki in range(len(regions)):
if regions[ki].area > maxarea:
ind = ki
maxarea = regions[ki].area
if ind == -1:
return []
bbox = np.array(regions[ind].bbox).astype(int)
return bbox
def fmo_model(B,H,F,M):
if len(H.shape) == 2:
H = H[:,:,np.newaxis]
F = F[:,:,:,np.newaxis]
elif len(F.shape) == 3:
F = np.repeat(F[:,:,:,np.newaxis],H.shape[2],3)
HM3 = np.zeros(B.shape)
HF = np.zeros(B.shape)
for hi in range(H.shape[2]):
M1 = M
if len(M.shape) > 2:
M1 = M[:, :, hi]
M3 = np.repeat(M1[:, :, np.newaxis], 3, axis=2)
HM = signal.fftconvolve(H[:,:,hi], M1, mode='same')
HM3 += np.repeat(HM[:, :, np.newaxis], 3, axis=2)
F3 = F[:,:,:,hi]
for kk in range(3):
HF[:,:,kk] += signal.fftconvolve(H[:,:,hi], F3[:,:,kk], mode='same')
I = B*(1-HM3) + HF
return I
def montageF(F):
return np.reshape(np.transpose(F,(0,1,3,2)),(F.shape[0],-1,F.shape[2]),'F')
def montageH(Hs):
return np.concatenate((np.sum(Hs[:,:,::3],2)[:,:,np.newaxis], np.sum(Hs[:,:,1::3],2)[:,:,np.newaxis], np.sum(Hs[:,:,2::3],2)[:,:,np.newaxis]),2)
def diskMask(rad):
sz = 2*np.array([rad, rad])
ran1 = np.arange(-(sz[1]-1)/2, ((sz[1]-1)/2)+1, 1.0)
ran2 = np.arange(-(sz[0]-1)/2, ((sz[0]-1)/2)+1, 1.0)
xv, yv = np.meshgrid(ran1, ran2)
mask = np.square(xv) + np.square(yv) <= rad*rad
M = mask.astype(float)
return M
def boundingBox(img, pads=None):
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
if pads is not None:
rmin = max(rmin - pads[0], 0)
rmax = min(rmax + pads[0], img.shape[0])
cmin = max(cmin - pads[1], 0)
cmax = min(cmax + pads[1], img.shape[1])
return rmin, rmax, cmin, cmax
def convert_size(size_bytes):
if size_bytes == 0:
return "0B"
size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
i = int(math.floor(math.log(size_bytes, 1024)))
power = math.pow(1024, i)
size = round(size_bytes / power, 2)
return "{} {}".format(size, size_name[i])
def calc_tiou(gt_traj, traj, rad):
ns = gt_traj.shape[1]
est_traj = np.zeros(gt_traj.shape)
if traj.shape[0] == 4:
for ni, ti in zip(range(ns), np.linspace(0,1,ns)):
est_traj[:,ni] = traj[[1,0]]*(1-ti) + ti*traj[[3,2]]
else:
bline = (np.abs(traj[3]+traj[7]) > 1.0).astype(float)
if bline:
len1 = np.linalg.norm(traj[[5,1]])
len2 = np.linalg.norm(traj[[7,3]])
v1 = traj[[5,1]]/len1
v2 = traj[[7,3]]/len2
piece = (len1+len2)/(ns-1)
for ni in range(ns):
est_traj[:,ni] = traj[[4,0]] + np.min([piece*ni, len1])*v1 + np.max([0,piece*ni-len1])*v2
else:
for ni, ti in zip(range(ns), np.linspace(0,1,ns)):
est_traj[:,ni] = traj[[4,0]] + ti*traj[[5,1]] + ti*ti*traj[[6,2]]
est_traj2 = est_traj[:,-1::-1]
ious = calciou(gt_traj, est_traj, rad)
ious2 = calciou(gt_traj, est_traj2, rad)
return np.max([np.mean(ious), np.mean(ious2)])
def calciou(p1, p2, rad):
dists = np.sqrt( np.sum( np.square(p1 - p2),0) )
dists[dists > 2*rad] = 2*rad
theta = 2*np.arccos( dists/ (2*rad) )
A = ((rad*rad)/2) * (theta - np.sin(theta))
I = 2*A
U = 2* np.pi * rad*rad - I
iou = I / U
return iou
def generate_lowFPSvideo(V,k=8,gamma_coef = 0.4,do_WB=True):
newk = int(np.floor(V.shape[3]/k))
Vk = np.reshape(V[:,:,:,:newk*k], (V.shape[0], V.shape[1], V.shape[2], newk, k) ).mean(-1)
if do_WB:
WB = np.expand_dims(np.array([2,1,2]),[0,1,3])
Vk_WB = ((Vk * WB)/WB.max())**gamma_coef
WB = np.expand_dims(np.array([2,1,2]),[0,1,3])
else:
Vk_WB = Vk**gamma_coef
return Vk_WB
def extend_bbox(bbox,ext,aspect_ratio,shp):
height, width = bbox[2] - bbox[0], bbox[3] - bbox[1]
h2 = height + ext
h2 = int(np.ceil(np.ceil(h2 / aspect_ratio) * aspect_ratio))
w2 = int(h2 / aspect_ratio)
wdiff = w2 - width
wdiff2 = int(np.round(wdiff/2))
hdiff = h2 - height
hdiff2 = int(np.round(hdiff/2))
bbox[0] -= hdiff2
bbox[2] += hdiff-hdiff2
bbox[1] -= wdiff2
bbox[3] += wdiff-wdiff2
bbox[bbox < 0] = 0
bbox[2] = np.min([bbox[2], shp[0]-1])
bbox[3] = np.min([bbox[3], shp[1]-1])
return bbox
def extend_bbox_uniform(bbox,ext,shp):
bbox[0] -= ext
bbox[2] += ext
bbox[1] -= ext
bbox[3] += ext
bbox[bbox < 0] = 0
bbox[2] = np.min([bbox[2], shp[0]-1])
bbox[3] = np.min([bbox[3], shp[1]-1])
return bbox
def extend_bbox_nonuniform(bbox,ext,shp):
bbox[0] -= ext[0]
bbox[2] += ext[0]
bbox[1] -= ext[1]
bbox[3] += ext[1]
bbox[bbox < 0] = 0
bbox[2] = np.min([bbox[2], shp[0]-1])
bbox[3] = np.min([bbox[3], shp[1]-1])
return bbox
def bbox_fmo(bbox,gt_hs,B):
gt_hs_crop = crop_only(gt_hs,bbox)
B_crop = crop_only(B,bbox)
bbox_crop,rad = fmo_detect_hs(gt_hs_crop,B_crop)
bbox_new = bbox_crop
if len(bbox_new) > 0:
bbox_new[:2] += bbox[:2]
bbox_new[2:] += bbox[:2]
else:
bbox_new = bbox
return bbox_new
def rgba2hs(rgba, bgr):
return rgba[:,:,:3]*rgba[:,:,3:] + bgr[:,:,:,None]*(1-rgba[:,:,3:])
def rgba2rgb(rgba):
return rgba[:,:,:3]*rgba[:,:,3:] + 1*(1-rgba[:,:,3:])
def sync_directions(est_hs_crop, gt_hs_crop):
do_flip = False
if gt_hs_crop is not None:
if np.mean((est_hs_crop[:,:,:,0] - gt_hs_crop[:,:,:,0])**2) > np.mean((est_hs_crop[:,:,:,0] - gt_hs_crop[:,:,:,-1])**2):
est_hs_crop = est_hs_crop[:,:,:,::-1]
do_flip = True
return est_hs_crop, do_flip
def sync_directions_smooth(est_hs_crop, est_traj, est_traj_prev, radius):
if est_traj_prev is not None:
dist = np.min([np.linalg.norm(est_traj[:,0] - est_traj_prev[:,0]), np.linalg.norm(est_traj[:,0] - est_traj_prev[:,-1])])
dist2 = np.min([np.linalg.norm(est_traj[:,-1] - est_traj_prev[:,0]), np.linalg.norm(est_traj[:,-1] - est_traj_prev[:,-1])])
flip_due_to_newobj = np.min([dist,dist2]) > 2*radius and est_traj[1,-1] > est_traj[1,0]
flip_due_to_smoothness = dist2 < dist
do_flip = flip_due_to_newobj or flip_due_to_smoothness
else:
do_flip = est_traj[1,-1] > est_traj[1,0]
if do_flip:
est_hs_crop = est_hs_crop[:,:,:,::-1]
est_traj = est_traj[:,::-1]
return est_hs_crop, est_traj, do_flip
def crop_resize(Is, bbox, res):
if Is is None:
return None
rev_axis = False
if len(Is.shape) == 3:
rev_axis = True
Is = Is[:,:,:,np.newaxis]
imr = np.zeros((res[1], res[0], 3, Is.shape[3]))
for kk in range(Is.shape[3]):
im = Is[bbox[0]:bbox[2], bbox[1]:bbox[3], :, kk]
imr[:,:,:,kk] = cv2.resize(im, res, interpolation = cv2.INTER_CUBIC)
if rev_axis:
imr = imr[:,:,:,0]
return imr
def crop_only(Is, bbox):
if Is is None:
return None
return Is[bbox[0]:bbox[2], bbox[1]:bbox[3]]
def rev_crop_resize_traj(inp, bbox, res):
inp[0] *= ( (bbox[2]-bbox[0])/res[1])
inp[1] *= ( (bbox[3]-bbox[1])/res[0])
inp[0] += bbox[0]
inp[1] += bbox[1]
return np.array(inp[[1,0]])
def rev_crop_resize(inp, bbox, I):
est_hs = np.tile(I.copy()[:,:,:,np.newaxis],(1,1,1,inp.shape[3]))
for hsk in range(inp.shape[3]):
est_hs[bbox[0]:bbox[2], bbox[1]:bbox[3],:,hsk] = cv2.resize(inp[:,:,:,hsk], (bbox[3]-bbox[1],bbox[2]-bbox[0]), interpolation = cv2.INTER_CUBIC)
return est_hs