
Implementation

From libfuse documentation:

“libfuse offers two APIs: a "high-level", synchronous API, and a "low-level" asynchronous API. In

both cases, incoming requests from the kernel are passed to the main program using callbacks.

When using the high-level API, the callbacks may work with file names and paths instead of inodes,

and processing of a request finishes when the callback function returns. When using the low-level

API, the callbacks must work with inodes and responses must be sent explicitly using a separate set

of API functions.”

 The original academic project described a 128kb image, composed

of 256, 512-byte blocks. 200 devoted to user data, 41 empty, 13 for

the directory structure, 1 for the FAT, and 1 root block at the end.

High-level API took care of path-to-inode mapping, and various other

operations, but only for the developer who could successfully

traverse the quagmire of FUSE documentation. Until very recently, I

was not such a developer. Consequently, MOOFS is implemented

using the low-level API, trading large scale performance and

abstraction for absolute control over every aspect of the design. The

amount of boilerplate may have increased dramatically, but at the

very least it was boilerplate with which I was intimately familiar.

Image Sections Block No.

 0
Data .

Blocks .
 .
 199

EMPTY 200-240

Directory
(Entries)

241-253

FAT 254

RootBlock 255

libfuman
MOOFS uses libfuman, a custom backend, to handle user data. With FUSE documentation so difficult to

understand, handling user data entirely within the MOOFS client was a nonstarter. In order to guard

against later fallout from flawed FUSE assumptions, a custom backend was designed to logically handle

filesystem operations, independent of libfuse. Critical metadata structures are fileObjects and fileBlocks,

managed by a fileUnitManager.

An active fileObject(fObj) SHALL maintain

all information necessary to support read

and write operations; however, it DOES

NOT have authority to manipulate

fileBlocks. When inactive, it is part of a

queue controlled by the fUMan. To save

space, a fileObject maintains HT_PN, a

multipurpose array of void pointers.

Suppose initially, a fObj is inactive. Its

HT_PN contains fObj* prev and fObj*

next, its neighbors within the inactive fObj queue. Inactive fObjs are to be distributed by the

fileUnitManager as needed. When a new file is created, the fUMan dequeues a fObj, toggling it active

and passing a directoryFileEntry pointer. The newly activated fObj’s HT_PN now contains fBlk* head and

fBlk* tail, which impose bounds on the accessible data. fBlk* tail can be moved to either extend a

file(adding blocks) or reduce it(removing blocks).

The fUMan may see fit to reduce a fObj, removing K of its file blocks. In this case, the fObj’s tail,

HT_PN[1], is moved backwards along the double linked list K fBlks,(via pointers), assigning a new tail to

the fObj. Then, the fUMan assigns the dump node’s HT_PN[0]=new tail->next, HT_PN[1]=old tail, as if to

creating a new file of size K and deactivates the node. These now-deactivated fBlks are added to queue

of inactive fBlks, to be distributed by the fUMan as needed. Deleting an fObj is reduction to 0, at which

point the fObj is added to the queue of inactive fObjs by the fUMan.

An active fileBlock(fBlk) holds a series of bytes

belonging to a fileObject. prev and next point to

the previous and next fBlks belonging to the

same fObj_id. When fBlk->Prev==NULL, this is

the start Block, and when fBlk->next==NULL, it

is the end Block. Otherwise, prev and next may

contain a series’ of bytes. When inactive, a fBlk

is part of a queue maintained by the fUMan, to

be distributed to fileObjects when necessary.

The fBlk SHALL keep track of its neighbors,

whether it is part of a fObj’s chainor the inactive

queue. Extend, reduce, and data buffer

management are delegated to the fUMan.

fileUnitManager

A fileUnitManager is the highest level of abstraction within libfuman, capable of interacting directly with

the MOOFS client.

