forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinputs.py
325 lines (284 loc) · 11.4 KB
/
inputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# Copyright 2017 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Input utils for virtual adversarial text classification."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow as tf
from adversarial_text.data import data_utils
class VatxtInput(object):
"""Wrapper around NextQueuedSequenceBatch."""
def __init__(self, batch, state_name=None, tokens=None, num_states=0):
"""Construct VatxtInput.
Args:
batch: NextQueuedSequenceBatch.
state_name: str, name of state to fetch and save.
tokens: int Tensor, tokens. Defaults to batch's F_TOKEN_ID sequence.
num_states: int The number of states to store.
"""
self._batch = batch
self._state_name = state_name
self._tokens = (tokens if tokens is not None else
batch.sequences[data_utils.SequenceWrapper.F_TOKEN_ID])
self._num_states = num_states
# Once the tokens have passed through embedding and LSTM, the output Tensor
# shapes will be time-major, i.e. shape = (time, batch, dim). Here we make
# both weights and labels time-major with a transpose, and then merge the
# time and batch dimensions such that they are both vectors of shape
# (time*batch).
w = batch.sequences[data_utils.SequenceWrapper.F_WEIGHT]
w = tf.transpose(w, [1, 0])
w = tf.reshape(w, [-1])
self._weights = w
l = batch.sequences[data_utils.SequenceWrapper.F_LABEL]
l = tf.transpose(l, [1, 0])
l = tf.reshape(l, [-1])
self._labels = l
@property
def tokens(self):
return self._tokens
@property
def weights(self):
return self._weights
@property
def labels(self):
return self._labels
@property
def length(self):
return self._batch.length
@property
def state_name(self):
return self._state_name
@property
def state(self):
# LSTM tuple states
state_names = _get_tuple_state_names(self._num_states, self._state_name)
return tuple([
tf.contrib.rnn.LSTMStateTuple(
self._batch.state(c_name), self._batch.state(h_name))
for c_name, h_name in state_names
])
def save_state(self, value):
# LSTM tuple states
state_names = _get_tuple_state_names(self._num_states, self._state_name)
save_ops = []
for (c_state, h_state), (c_name, h_name) in zip(value, state_names):
save_ops.append(self._batch.save_state(c_name, c_state))
save_ops.append(self._batch.save_state(h_name, h_state))
return tf.group(*save_ops)
def _get_tuple_state_names(num_states, base_name):
"""Returns state names for use with LSTM tuple state."""
state_names = [('{}_{}_c'.format(i, base_name), '{}_{}_h'.format(
i, base_name)) for i in range(num_states)]
return state_names
def _split_bidir_tokens(batch):
tokens = batch.sequences[data_utils.SequenceWrapper.F_TOKEN_ID]
# Tokens have shape [batch, time, 2]
# forward and reverse have shape [batch, time].
forward, reverse = [
tf.squeeze(t, axis=[2]) for t in tf.split(tokens, 2, axis=2)
]
return forward, reverse
def _filenames_for_data_spec(phase, bidir, pretrain, use_seq2seq):
"""Returns input filenames for configuration.
Args:
phase: str, 'train', 'test', or 'valid'.
bidir: bool, bidirectional model.
pretrain: bool, pretraining or classification.
use_seq2seq: bool, seq2seq data, only valid if pretrain=True.
Returns:
Tuple of filenames.
Raises:
ValueError: if an invalid combination of arguments is provided that does not
map to any data files (e.g. pretrain=False, use_seq2seq=True).
"""
data_spec = (phase, bidir, pretrain, use_seq2seq)
data_specs = {
('train', True, True, False): (data_utils.TRAIN_LM,
data_utils.TRAIN_REV_LM),
('train', True, False, False): (data_utils.TRAIN_BD_CLASS,),
('train', False, True, False): (data_utils.TRAIN_LM,),
('train', False, True, True): (data_utils.TRAIN_SA,),
('train', False, False, False): (data_utils.TRAIN_CLASS,),
('test', True, True, False): (data_utils.TEST_LM,
data_utils.TRAIN_REV_LM),
('test', True, False, False): (data_utils.TEST_BD_CLASS,),
('test', False, True, False): (data_utils.TEST_LM,),
('test', False, True, True): (data_utils.TEST_SA,),
('test', False, False, False): (data_utils.TEST_CLASS,),
('valid', True, False, False): (data_utils.VALID_BD_CLASS,),
('valid', False, False, False): (data_utils.VALID_CLASS,),
}
if data_spec not in data_specs:
raise ValueError(
'Data specification (phase, bidir, pretrain, use_seq2seq) %s not '
'supported' % str(data_spec))
return data_specs[data_spec]
def _read_single_sequence_example(file_list, tokens_shape=None):
"""Reads and parses SequenceExamples from TFRecord-encoded file_list."""
tf.logging.info('Constructing TFRecordReader from files: %s', file_list)
file_queue = tf.train.string_input_producer(file_list)
reader = tf.TFRecordReader()
seq_key, serialized_record = reader.read(file_queue)
ctx, sequence = tf.parse_single_sequence_example(
serialized_record,
sequence_features={
data_utils.SequenceWrapper.F_TOKEN_ID:
tf.FixedLenSequenceFeature(tokens_shape or [], dtype=tf.int64),
data_utils.SequenceWrapper.F_LABEL:
tf.FixedLenSequenceFeature([], dtype=tf.int64),
data_utils.SequenceWrapper.F_WEIGHT:
tf.FixedLenSequenceFeature([], dtype=tf.float32),
})
return seq_key, ctx, sequence
def _read_and_batch(data_dir,
fname,
state_name,
state_size,
num_layers,
unroll_steps,
batch_size,
bidir_input=False):
"""Inputs for text model.
Args:
data_dir: str, directory containing TFRecord files of SequenceExample.
fname: str, input file name.
state_name: string, key for saved state of LSTM.
state_size: int, size of LSTM state.
num_layers: int, the number of layers in the LSTM.
unroll_steps: int, number of timesteps to unroll for TBTT.
batch_size: int, batch size.
bidir_input: bool, whether the input is bidirectional. If True, creates 2
states, state_name and state_name + '_reverse'.
Returns:
Instance of NextQueuedSequenceBatch
Raises:
ValueError: if file for input specification is not found.
"""
data_path = os.path.join(data_dir, fname)
if not tf.gfile.Exists(data_path):
raise ValueError('Failed to find file: %s' % data_path)
tokens_shape = [2] if bidir_input else []
seq_key, ctx, sequence = _read_single_sequence_example(
[data_path], tokens_shape=tokens_shape)
# Set up stateful queue reader.
state_names = _get_tuple_state_names(num_layers, state_name)
initial_states = {}
for c_state, h_state in state_names:
initial_states[c_state] = tf.zeros(state_size)
initial_states[h_state] = tf.zeros(state_size)
if bidir_input:
rev_state_names = _get_tuple_state_names(num_layers,
'{}_reverse'.format(state_name))
for rev_c_state, rev_h_state in rev_state_names:
initial_states[rev_c_state] = tf.zeros(state_size)
initial_states[rev_h_state] = tf.zeros(state_size)
batch = tf.contrib.training.batch_sequences_with_states(
input_key=seq_key,
input_sequences=sequence,
input_context=ctx,
input_length=tf.shape(sequence['token_id'])[0],
initial_states=initial_states,
num_unroll=unroll_steps,
batch_size=batch_size,
allow_small_batch=False,
num_threads=4,
capacity=batch_size * 10,
make_keys_unique=True,
make_keys_unique_seed=29392)
return batch
def inputs(data_dir=None,
phase='train',
bidir=False,
pretrain=False,
use_seq2seq=False,
state_name='lstm',
state_size=None,
num_layers=0,
batch_size=32,
unroll_steps=100):
"""Inputs for text model.
Args:
data_dir: str, directory containing TFRecord files of SequenceExample.
phase: str, dataset for evaluation {'train', 'valid', 'test'}.
bidir: bool, bidirectional LSTM.
pretrain: bool, whether to read pretraining data or classification data.
use_seq2seq: bool, whether to read seq2seq data or the language model data.
state_name: string, key for saved state of LSTM.
state_size: int, size of LSTM state.
num_layers: int, the number of LSTM layers.
batch_size: int, batch size.
unroll_steps: int, number of timesteps to unroll for TBTT.
Returns:
Instance of VatxtInput (x2 if bidir=True and pretrain=True, i.e. forward and
reverse).
"""
with tf.name_scope('inputs'):
filenames = _filenames_for_data_spec(phase, bidir, pretrain, use_seq2seq)
if bidir and pretrain:
# Bidirectional pretraining
# Requires separate forward and reverse language model data.
forward_fname, reverse_fname = filenames
forward_batch = _read_and_batch(data_dir, forward_fname, state_name,
state_size, num_layers, unroll_steps,
batch_size)
state_name_rev = state_name + '_reverse'
reverse_batch = _read_and_batch(data_dir, reverse_fname, state_name_rev,
state_size, num_layers, unroll_steps,
batch_size)
forward_input = VatxtInput(
forward_batch, state_name=state_name, num_states=num_layers)
reverse_input = VatxtInput(
reverse_batch, state_name=state_name_rev, num_states=num_layers)
return forward_input, reverse_input
elif bidir:
# Classifier bidirectional LSTM
# Shared data source, but separate token/state streams
fname, = filenames
batch = _read_and_batch(
data_dir,
fname,
state_name,
state_size,
num_layers,
unroll_steps,
batch_size,
bidir_input=True)
forward_tokens, reverse_tokens = _split_bidir_tokens(batch)
forward_input = VatxtInput(
batch,
state_name=state_name,
tokens=forward_tokens,
num_states=num_layers)
reverse_input = VatxtInput(
batch,
state_name=state_name + '_reverse',
tokens=reverse_tokens,
num_states=num_layers)
return forward_input, reverse_input
else:
# Unidirectional LM or classifier
fname, = filenames
batch = _read_and_batch(
data_dir,
fname,
state_name,
state_size,
num_layers,
unroll_steps,
batch_size,
bidir_input=False)
return VatxtInput(batch, state_name=state_name, num_states=num_layers)