-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTransform.py
207 lines (154 loc) · 8.37 KB
/
Transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.utils import softmax
from torch_scatter import scatter
import copy
class TemporalAttentionLayer(nn.Module):
def __init__(self,
input_dim,
n_heads,
num_time_steps,
attn_drop,
residual):
super(TemporalAttentionLayer, self).__init__()
self.n_heads = n_heads
self.num_time_steps = num_time_steps
self.residual = residual
# define weights
self.position_embeddings = nn.Parameter(torch.Tensor(num_time_steps, input_dim))
self.Q_embedding_weights = nn.Parameter(torch.Tensor(input_dim, input_dim))
self.K_embedding_weights = nn.Parameter(torch.Tensor(input_dim, input_dim))
self.V_embedding_weights = nn.Parameter(torch.Tensor(input_dim, input_dim))
# ff
self.lin = nn.Linear(input_dim, input_dim, bias=True)
# dropout
self.attn_dp = nn.Dropout(attn_drop)
self.xavier_init()
def forward(self, inputs, EC):
"""In: attn_outputs (of StructuralAttentionLayer at each snapshot):= [N, T, F]"""
# 1: Add position embeddings to input
position_inputs = torch.arange(0, self.num_time_steps).reshape(1, -1).repeat(inputs.shape[0], 1).long().to(
inputs.device)
temporal_inputs = inputs + self.position_embeddings[position_inputs] # [N, T, F]
# 2: Query, Key based multi-head self attention.
q = torch.tensordot(temporal_inputs, self.Q_embedding_weights, dims=([2], [0])) # [N, T, F]
# k = torch.tensordot(temporal_inputs, self.K_embedding_weights, dims=([2], [0])) # [N, T, F]
k = torch.tensordot(EC, self.K_embedding_weights, dims=([2], [0])) # [N, T, F]
v = torch.tensordot(temporal_inputs, self.V_embedding_weights, dims=([2], [0])) # [N, T, F]
# 3: Split, concat and scale.
split_size = int(q.shape[-1] / self.n_heads)
q_ = torch.cat(torch.split(q, split_size_or_sections=split_size, dim=2), dim=0) # [hN, T, F/h]
k_ = torch.cat(torch.split(k, split_size_or_sections=split_size, dim=2), dim=0) # [hN, T, F/h]
v_ = torch.cat(torch.split(v, split_size_or_sections=split_size, dim=2), dim=0) # [hN, T, F/h]
outputs = torch.matmul(q_, k_.permute(0, 2, 1)) # [hN, T, T]
outputs = outputs / (self.num_time_steps ** 0.5)
# 4: Masked (causal) softmax to compute attention weights.
# diag_val = torch.ones_like(outputs[0])
# tril = torch.tril(diag_val)
# masks = tril[None, :, :].repeat(outputs.shape[0], 1, 1) # [h*N, T, T]
# padding = torch.ones_like(masks) * (-2 ** 32 + 1)
# outputs = torch.where(masks == 0, padding, outputs)
outputs = F.softmax(outputs, dim=2)
self.attn_wts_all = outputs # [h*N, T, T]
# #spatio-temporal dependency
# print("spatio-temporal dependency size", outputs.size())
# print(outputs)
# 5: Dropout on attention weights.
if self.training:
outputs = self.attn_dp(outputs)
ST_dependecny= outputs
ST_dependecny = torch.cat(torch.split(ST_dependecny, split_size_or_sections=int(ST_dependecny.shape[0] / self.n_heads), dim=0),
dim=2) # [N, T, F]
print("dropout attention map size", outputs.size())
# print(outputs)
# ST_dependecny1 = torch.cat(
# torch.split(outputs, split_size_or_sections=int(outputs.shape[0] / self.n_heads), dim=0),
# dim=2)
# print("dropout ST_dependecny1 attention map size", ST_dependecny1.size())
# print(ST_dependecny1)
#
# ST_dependecny2 = torch.cat(
# torch.split(outputs, split_size_or_sections=int(outputs.shape[0] / self.n_heads), dim=2),
# dim=0)
# print("dropout ST_dependecny2 attention map size", ST_dependecny2.size())
# print(ST_dependecny2)
outputs = torch.matmul(outputs, v_) # [hN, T, F/h]
outputs = torch.cat(torch.split(outputs, split_size_or_sections=int(outputs.shape[0] / self.n_heads), dim=0),
dim=2) # [N, T, F]
# 6: Feedforward and residual
outputs = self.feedforward(outputs)
if self.residual:
outputs = outputs + temporal_inputs
#7: aggregation
outputs = torch.mean(outputs, dim=1)
return outputs, ST_dependecny
def feedforward(self, inputs):
# outputs = F.relu(self.lin(inputs))
outputs = F.relu(self.lin(inputs))
return outputs + inputs
def xavier_init(self):
nn.init.xavier_uniform_(self.position_embeddings)
nn.init.xavier_uniform_(self.Q_embedding_weights)
nn.init.xavier_uniform_(self.K_embedding_weights)
nn.init.xavier_uniform_(self.V_embedding_weights)
# gcn_out_fea=128, time_length=10 temporal_drop=0.5 value;
# head_num='16,8,8', transform_layer='128' str;
# residual=True bool;
class TransformModel(nn.Module):
def __init__(self, gcn_out_fea, time_length, head_num, transform_layer, temporal_drop, residual):
super(TransformModel, self).__init__()
self.num_time_steps = time_length
self.temporal_head_config = list(map(int, head_num.split(",")))
self.temporal_layer_config = list(map(int, transform_layer.split(",")))
self.temporal_drop = temporal_drop
self.residual = residual
# self.temporal_attn = self.build_model(gcn_out_fea)
input_dim = gcn_out_fea
self.layer = TemporalAttentionLayer(input_dim=input_dim,
n_heads=self.temporal_head_config[0],
num_time_steps=self.num_time_steps,
attn_drop=self.temporal_drop,
residual=self.residual)
# self.temporal_attention_layers = nn.Sequential()
# print("self.temporal_layer_config", self.temporal_layer_config)
# print("layer num", len(self.temporal_layer_config))
# for i in range(len(self.temporal_layer_config)):
# self.layer = TemporalAttentionLayer(input_dim=input_dim,
# n_heads=self.temporal_head_config[i],
# num_time_steps=self.num_time_steps,
# attn_drop=self.temporal_drop,
# residual=self.residual)
# self.temporal_attention_layers.add_module(name="temporal_layer_{}".format(i), module=self.layer)
# input_dim = self.temporal_layer_config[i]
#
# print("input_dim", input_dim)
# print("n_heads", self.temporal_head_config[i])
# print("num_time_steps", self.num_time_steps)
def forward(self, x, EC):
# Temporal Attention forward
# print("transformer input size", x.size()) #[N, Time, Feature]
# temporal_out = self.temporal_attn(x, EC)
temporal_out, ST_dependecny = self.layer(x, EC)
return temporal_out, ST_dependecny
# def build_model(self, gcn_out_fea):
#
# input_dim = gcn_out_fea
#
# temporal_attention_layers = nn.Sequential()
# print("self.temporal_layer_config", self.temporal_layer_config)
# print("layer num", len(self.temporal_layer_config))
# for i in range(len(self.temporal_layer_config)):
# layer = TemporalAttentionLayer(input_dim=input_dim,
# n_heads=self.temporal_head_config[i],
# num_time_steps=self.num_time_steps,
# attn_drop=self.temporal_drop,
# residual=self.residual)
# temporal_attention_layers.add_module(name="temporal_layer_{}".format(i), module=layer)
# input_dim = self.temporal_layer_config[i]
#
# print("input_dim", input_dim)
# print("n_heads", self.temporal_head_config[i])
# print("num_time_steps", self.num_time_steps)
#
# return temporal_attention_layers