forked from NamanArora/Image-Stitching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
launcher.py
220 lines (184 loc) · 6.49 KB
/
launcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# add the images in left to right order
# make sure no image is greater than 100kb
import sys
from matplotlib import pyplot as plt
import cv2
import numpy as np
# initialize empty lists here
imageFilesPath = []
images = []
left = []
right = []
center = None
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=0, trees=5)
search_params = dict(checks=50)
BF = cv2.FlannBasedMatcher(index_params, search_params)
count = 0
centerIdx = 0
surf = cv2.xfeatures2d.SURF_create()
# Get keypoints and features
def getSURFFeatures(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
kp, des = surf.detectAndCompute(gray, None)
x1 = [p.pt[0] for p in kp]
y1 = [p.pt[1] for p in kp]
plt.gray()
plt.figure(1)
plt.imshow(image)
plt.plot(x1, y1, 'r.')
plt.title('KeyPoints')
plt.show()
ret = []
ret.append(des)
ret.append(kp)
return ret
def match(i1, i2, direction=None):
imageSet1 = getSURFFeatures(i1)
imageSet2 = getSURFFeatures(i2)
print "Direction : ", direction
matches = BF.knnMatch(
imageSet2[0],
imageSet1[0],
k=2
)
good = []
for i, (m, n) in enumerate(matches):
if m.distance < 0.7 * n.distance:
good.append((m.trainIdx, m.queryIdx))
if len(good) > 4:
pointsCurrent = imageSet2[1]
pointsPrevious = imageSet1[1]
matchedPointsCurrent = np.float32(
[pointsCurrent[i].pt for (__, i) in good]
)
matchedPointsPrev = np.float32(
[pointsPrevious[i].pt for (i, __) in good]
)
H, s = cv2.findHomography(matchedPointsCurrent, matchedPointsPrev, cv2.RANSAC, 4)
return H
return None
def stitchLeft():
img1 = left[0]
for i in range(1, len(left)):
# Feature extraction
featureSet1 = getSURFFeatures(img1)
featureSet2 = getSURFFeatures(left[i])
desc1 = featureSet1[0]
desc2 = featureSet2[0]
kp1 = featureSet1[1]
kp2 = featureSet2[1]
# Image Matching
matches = BF.match(desc1, desc2)
img3 = cv2.drawMatches(img1, kp1, left[i], kp2, matches[:10], None, flags=2)
plt.imshow(img3), plt.show()
# Finding homography Index
HI = match(img1, left[i], 'left')
print "homography is \n"
print HI
iHI = np.linalg.inv(HI)
print "Inverse Homography :", iHI
# Find final points
final = np.dot(iHI , np.array([img1.shape[1], img1.shape[0], 1]))
# Normalize the last index to 1
final = final/final[-1]
# Find coordinate shift
shift = np.dot(iHI,np.array([0,0,1]))
# Normalize
shift = shift/shift[-1]
# Get the offsets
offsetX = abs(int(shift[0]))
offsetY = abs(int(shift[1]))
# Modfy the H to incorporate origin shift
iHI[0][-1] += abs(shift[0])
iHI[1][-1] += abs(shift[1])
#Find final points after H shift
final = np.dot(iHI , np.array([img1.shape[1], img1.shape[0], 1]))
# Final image size
imgSize = (int(final[0]) + offsetX, int(final[1]) + offsetY)
# Warp the first img wrt to second
tmp = cv2.warpPerspective(img1, iHI, imgSize)
cv2.imshow("warped",tmp)
cv2.waitKey()
tmp[offsetY:left[i].shape[0]+offsetY, offsetX:left[i].shape[1]+offsetX] = left[i]
img1 = tmp;
return tmp
def stitchRight(leftImage):
for rImage in right:
H = match(leftImage, rImage)
#cv2.imshow("right Image", rImage)
#print "Homography :", H
newCord = np.dot(H, np.array([rImage.shape[1], rImage.shape[0], 1]))
#print " shapes"
#print H.shape, newCord.shape
#print newCord
newCord = newCord / newCord[-1]
newSize = (int(newCord[0]) + leftImage.shape[1], int(newCord[1]) + leftImage.shape[0])
tmp = cv2.warpPerspective(rImage, H, newSize)
cv2.imshow("tpright", tmp)
cv2.waitKey()
tmp = mix_and_match(leftImage, tmp)
#print "tmp shape", tmp.shape
#print "self.leftimage shape=", self.leftImage.shape
leftImage = tmp
return leftImage
def mix_and_match(leftStitchedImage, warpedImage):
image1y, image1x = leftStitchedImage.shape[:2]
image2y, image2x = warpedImage.shape[:2]
print leftStitchedImage[-1, -1]
black_l = np.where(leftStitchedImage == np.array([0, 0, 0]))
black_wi = np.where(warpedImage == np.array([0, 0, 0]))
print black_l[-1]
for i in range(0, image1x):
for j in range(0, image1y):
try:
if (np.array_equal(leftStitchedImage[j, i], np.array([0, 0, 0])) and np.array_equal(warpedImage[j, i],
np.array([0, 0, 0]))):
warpedImage[j, i] = [0, 0, 0]
else:
if np.array_equal(warpedImage[j, i], [0, 0, 0]):
# print "PIXEL"
warpedImage[j, i] = leftStitchedImage[j, i]
else:
if not np.array_equal(leftStitchedImage[j, i], [0, 0, 0]):
bw, gw, rw = warpedImage[j, i]
bl, gl, rl = leftStitchedImage[j, i]
# b = (bl+bw)/2
# g = (gl+gw)/2
# r = (rl+rw)/2
warpedImage[j, i] = [bl, gl, rl]
except:
pass
# cv2.imshow("waRPED mix", warpedImage)
# cv2.waitKey()
return warpedImage
def populate_data():
centerIdx = count / 2
center_im = images[centerIdx]
for i in range(count):
if i <= centerIdx:
left.append(images[i])
else:
right.append(images[i])
print "Image lists prepared"
# print left
# print right
if __name__ == '__main__':
args = sys.argv[1]
print "File loaded : " + args
pathToImagesFile = open(args, 'r')
for path in pathToImagesFile.readlines():
imageFilesPath.append(path.rstrip('\r\n'))
pathToImagesFile.close()
print imageFilesPath
for imageFilePath in imageFilesPath:
images.append(cv2.imread(imageFilePath))
# print images
count = len(images)
populate_data()
leftImage = stitchLeft()
final = stitchRight(leftImage)
cv2.imwrite("final.jpg",final)
cv2.imshow("final",final)
cv2.waitKey()
cv2.destroyAllWindows()