-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathshortest_path_in_directed_acyclic_weighted_graph.cpp
75 lines (67 loc) · 2.28 KB
/
shortest_path_in_directed_acyclic_weighted_graph.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
// we didn't use simple bfs as used in this https://www.youtube.com/watch?v=hwCWi7-bRfI&list=PLgUwDviBIf0rGEWe64KWas0Nryn7SCRWw&index=16
// because lets say you want to do it using DFS
// yes you can do it using DFS , but consider the case when you already updated a node's distance by a dfs() call and
// lets say its 7 and as it is DFS then its obvious that you also have updated all the nodes in its segment of DFS call .
// now you have reached to the same node from different dfs() call and now the distance is 4 ,
// so in order to update all the nodes which were affected by the DFS call previously on the node considering distance as 7 ,
// you now again have to do the same so that its updated with new min distance.
// Same is the scenario for the simple BFS approach.
// These multiple time DFS/BFS calls degrades the Time Complexity, hence Topological Ordering save you from that overhead as you already know which nodes will come after the current node , so you keep on updating it .
#include<bits/stdc++.h>
using namespace std;
class Solution {
public:
bool checkForCycle(int s, int V, vector<int> adj[], vector<int>& visited)
{
vector<int> parent(V, -1);
// Create a queue for BFS
queue<pair<int,int>> q;
visited[s] = true;
q.push({s, -1});
while (!q.empty()) {
int node = q.front().first;
int par = q.front().second;
q.pop();
for (auto it : adj[node]) {
if (!visited[it]) {
visited[it] = true;
q.push({it, node});
}
else if (par != it)
return true;
}
}
return false;
}
public:
bool isCycle(int V, vector<int>adj[]){
vector<int> vis(V, 0);
for(int i = 0;i<V;i++) {
if(!vis[i]) {
if(checkForCycle(i, V, adj, vis)) return true;
}
}
return false;
}
};
int main(){
int tc;
cin >> tc;
while(tc--){
int V, E;
cin >> V >> E;
vector<int>adj[V];
for(int i = 0; i < E; i++){
int u, v;
cin >> u >> v;
adj[u].push_back(v);
adj[v].push_back(u);
}
Solution obj;
bool ans = obj.isCycle(V, adj);
if(ans)
cout << "1\n";
else cout << "0\n";
}
return 0;
}