-
Notifications
You must be signed in to change notification settings - Fork 0
/
bibtex.bib
1823 lines (1484 loc) · 52.8 KB
/
bibtex.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@book{GelmanBayesianDataAnalysis2013,
title={Bayesian Data Analysis, Third Edition},
author={Gelman, A. and Carlin, J.B. and Stern, H.S. and Dunson, D.B. and Vehtari, A. and Rubin, D.B.},
isbn={9781439840955},
lccn={2013039507},
series={Chapman \& Hall/CRC Texts in Statistical Science},
year={2013},
publisher={Taylor \& Francis}
}
@book{WoodGeneralizedAdditiveModels2017,
title={Generalized Additive Models: An Introduction with R, Second Edition},
author={Wood, S.N.},
isbn={9781498728379},
series={Chapman \& Hall/CRC Texts in Statistical Science},
year={2017},
publisher={CRC Press}
}
@article{ChipmanBARTBayesianadditive2010,
title={BART: Bayesian additive regression trees},
author={Chipman, Hugh A. and George, Edward I. and McCulloch, Robert E.},
journal={The Annals of Applied Statistics},
volume={4},
number={1},
pages={266--298},
year={2010},
publisher={Institute of Mathematical Statistics}
}
@book{ZhouEnsembleMethods2012,
title={Ensemble Methods: Foundations and Algorithms},
author={Zhou, Z.H.},
isbn={9781439830055},
lccn={2012014555},
series={Chapman \& Hall/CRC data mining and knowledge discovery series},
year={2012},
publisher={CRC Press}
}
@inproceedings{royMondrianProcess,
title={The Mondrian process},
author={Roy, Daniel M and Teh, Yee Whye},
booktitle={Proceedings of the 21st International Conference on Neural Information Processing Systems},
pages={1377--1384},
year={2008}
}
@article{BalogMondrianProcessMachine2015,
title={The Mondrian process for machine learning},
author={Balog, Matej and Teh, Yee Whye},
journal={arXiv preprint arXiv:1507.05181},
year={2015}
}
@inproceedings{Lakshminarayanan,
title={Particle Gibbs for Bayesian additive regression trees},
author={Lakshminarayanan, Balaji and Roy, Daniel and Teh, Yee Whye},
booktitle={Artificial Intelligence and Statistics},
pages={553--561},
year={2015},
organization={PMLR}
}
@book{blitzstein_2019,
title={Introduction to Probability, Second Edition},
author={Blitzstein, J.K. and Hwang, J.},
isbn={9780429766732},
lccn={2020693004},
series={Chapman \& Hall/CRC Texts in Statistical Science},
year={2019},
publisher={CRC Press}
}
@article{Kumar2019,
title={ArviZ a unified library for exploratory analysis of Bayesian models in Python},
author={Kumar, Ravin and Carroll, Colin and Hartikainen, Ari and Martin, Osvaldo},
journal={Journal of Open Source Software},
volume={4},
number={33},
pages={1143},
year={2019},
publisher={The Open Journal}
}
@book{cox_2006,
place={Cambridge},
title={Principles of statistical inference},
publisher={Cambridge University Press},
isbn = {978-0521685672},
language = {English},
author={Cox, D. R.},
year={2006},
pages = {178}
}
@article{vehtari_rank_2019,
author = {Aki Vehtari and Andrew Gelman and Daniel Simpson and Bob Carpenter and Paul-Christian Bürkner},
title = {{Rank-Normalization, Folding, and Localization: An Improved $\widehat{R}$ for Assessing Convergence of MCMC}},
journal = {Bayesian Analysis},
publisher = {International Society for Bayesian Analysis},
pages = {1 -- 38},
year = {2021},
doi = {10.1214/20-BA1221},
URL = {https://doi.org/10.1214/20-BA1221}
}
@article{watanabe2010asymptotic,
title={Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory.},
author={Watanabe, Sumio and Opper, Manfred},
journal={Journal of machine learning research},
volume={11},
number={12},
year={2010}
}
@article{kruschke_2013,
title={Bayesian estimation supersedes the t test.},
author={Kruschke, John K},
journal={Journal of Experimental Psychology: General},
volume={142},
number={2},
pages={573},
year={2013},
publisher={American Psychological Association}
}
@article{10.2307/2979084,
title={The mathematical theory of banking},
author={Edgeworth, Francis Y},
journal={Journal of the Royal Statistical Society},
volume={51},
number={1},
pages={113--127},
year={1888},
publisher={JSTOR}
}
@book{Cover_Thomas,
title={Elements of Information Theory},
author={Cover, T.M. and Thomas, J.A.},
isbn={9781118585771},
lccn={2005047799},
year={2012},
publisher={Wiley}
}
@article{gneiting_2007,
title={Strictly proper scoring rules, prediction, and estimation},
author={Gneiting, Tilmann and Raftery, Adrian E},
journal={Journal of the American statistical Association},
volume={102},
number={477},
pages={359--378},
year={2007},
publisher={Taylor \& Francis}
}
@article{vehtari_pareto_2019,
title={Pareto smoothed importance sampling},
author={Vehtari, Aki and Simpson, Daniel and Gelman, Andrew and Yao, Yuling and Gabry, Jonah},
journal={arXiv preprint arXiv:1507.02646},
year={2021}
}
@article{gabry_visualization_2017,
title={Visualization in Bayesian workflow},
author={Gabry, Jonah and Simpson, Daniel and Vehtari, Aki and Betancourt, Michael and Gelman, Andrew},
journal={Journal of the Royal Statistical Society: Series A (Statistics in Society)},
volume={182},
number={2},
pages={389--402},
year={2019},
publisher={Wiley Online Library}
}
@article{vehtari_practical_2017,
title={Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC},
author={Vehtari, Aki and Gelman, Andrew and Gabry, Jonah},
journal={Statistics and computing},
volume={27},
number={5},
pages={1413--1432},
year={2017},
publisher={Springer}
}
@article{yao_stacking_2018,
title={Using stacking to average Bayesian predictive distributions (with discussion)},
author={Yao, Yuling and Vehtari, Aki and Simpson, Daniel and Gelman, Andrew},
journal={Bayesian Analysis},
volume={13},
number={3},
pages={917--1007},
year={2018},
publisher={International Society for Bayesian Analysis}
}
@incollection{akaike_1973,
title={Information theory and an extension of the maximum likelihood principle},
author={Akaike, Hirotogu},
booktitle={Selected papers of hirotugu akaike},
pages={199--213},
year={1998},
publisher={Springer}
}
@book{gilks1995markov,
title={Markov Chain Monte Carlo in Practice},
author={Gilks, W.R. and Richardson, S. and Spiegelhalter, D.},
isbn={9781482214970},
series={Chapman \& Hall/CRC Interdisciplinary Statistics},
year={1995},
publisher={CRC Press}
}
@misc{wikipedia_model_2020,
author = {Wikipedia contributors},
title = {Conceptual model --- {W}ikipedia{,} The Free Encyclopedia},
url = {https://en.wikipedia.org/w/index.php?title=Conceptual_model&oldid=952394363},
note = {Page Version ID: 952394363},
}
@article{hoeting_bayesian_1999,
title={Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and EI George, and a rejoinder by the authors},
author={Hoeting, Jennifer A and Madigan, David and Raftery, Adrian E and Volinsky, Chris T},
journal={Statistical science},
volume={14},
number={4},
pages={382--417},
year={1999},
publisher={Institute of Mathematical Statistics}
}
@inbook{Diaconis2011,
author = {Diaconis, Persi},
publisher = {John Wiley \& Sons, Ltd},
isbn = {9781118150702},
title = {Theories of Data Analysis: From Magical Thinking Through Classical Statistics},
booktitle = {Exploring Data Tables, Trends, and Shapes},
chapter = {1},
pages = {1-36},
year = {2006},
keywords = {data analysis, intuitive statistics, multiplicity, controlled magical thinking, data structure},
abstract = {Summary This chapter contains sections titled: Intuitive Statistics—Some Inferential Problems Multiplicity—A Pervasive Problem Some Remedies Theories for Data Analysis Uses for Mathematics In Defense of Controlled Magical Thinking}
}
@book{WestfallUnderstandingAdvancedStatistical2013,
title={Understanding Advanced Statistical Methods},
author={Westfall, P. and Henning, K.S.S.},
isbn={9781466512108},
lccn={2013003655},
series={Chapman \& Hall/CRC Texts in Statistical Science},
year={2013},
publisher={Taylor \& Francis}
}
@article{Neal_1994,
title={Contribution to the discussion of “Approximate Bayesian inference with the weighted likelihood bootstrap” by Michael A. Newton and Adrian E. Raftery},
author={Neal, Radford M},
journal = {Journal of the Royal Statistical Society. Series B (Methodological)},
volume={56},
pages={41--42},
year={1994}
}
@article{Friel_2011,
title={Estimating the evidence--a review},
author={Friel, Nial and Wyse, Jason},
journal={Statistica Neerlandica},
volume={66},
number={3},
pages={288--308},
year={2012},
publisher={Wiley Online Library}
}
@inproceedings{Robert_2009,
title={Computational methods for Bayesian model choice},
author={Robert, Christian P and Wraith, Darren},
booktitle={Aip conference proceedings},
volume={1193},
number={1},
pages={251--262},
year={2009},
organization={American Institute of Physics}
}
@article{clark_westerberg_2009,
title={How random is the toss of a coin?},
author={Clark, Matthew PA. and Westerberg, Brian D.},
journal={Cmaj},
volume={181},
number={12},
pages={E306--E308},
year={2009},
publisher={Can Med Assoc}
}
@book{mcelreath_2020,
title={Statistical Rethinking: A Bayesian Course with Examples in R and Stan},
author={McElreath, R.},
isbn={9781482253481},
series={Chapman \& Hall/CRC Texts in Statistical Science},
year={2020},
publisher={CRC Press}
}
@book{tukey77,
title={Exploratory Data Analysis},
publisher={Addison-Wesley},
author={Tukey, John W.},
year={1977},
}
@article{Naesseth2019,
title={Elements of sequential monte carlo},
author={Naesseth, Christian A and Lindsten, Fredrik and Sch{\"o}n, Thomas B},
journal={arXiv preprint arXiv:1903.04797},
year={2019}
}
@article{Ching2007,
title={Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging},
author={Ching, Jianye and Chen, Yi-Chu},
journal={Journal of engineering mechanics},
volume={133},
number={7},
pages={816--832},
year={2007},
publisher={American Society of Civil Engineers}
}
@article{delmoral2006,
title={Sequential monte carlo samplers},
author={Del Moral, Pierre and Doucet, Arnaud and Jasra, Ajay},
journal={Journal of the Royal Statistical Society: Series B (Statistical Methodology)},
volume={68},
number={3},
pages={411--436},
year={2006},
publisher={Wiley Online Library}
}
@book{Chopin2020,
title={An Introduction to Sequential Monte Carlo},
author={Chopin, N. and Papaspiliopoulos, O.},
isbn={9783030478445},
series={Springer Series in Statistics},
year={2020},
publisher={Springer International Publishing}
}
@article{Marin2012,
title={Approximate Bayesian computational methods},
author={Marin, Jean-Michel and Pudlo, Pierre and Robert, Christian P and Ryder, Robin J},
journal={Statistics and Computing},
volume={22},
number={6},
pages={1167--1180},
year={2012},
publisher={Springer}
}
@inproceedings{Tukey1977,
title = {Modern {{Techniques}} in {{Data Analysis}}},
booktitle = {proceesings of the Sponsored Regional Research Conference},
author = {Tukey, John W.},
year = {1977},
location = {{Southern Massachusetts University, North Dartmouth}},
eventtitle = {{{SF}}-{{Sponsored Regional Research Conference}}}
}
@article{Rayner2002,
title={Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions},
author={Rayner, Glen D and MacGillivray, Helen L},
journal={Statistics and Computing},
volume={12},
number={1},
pages={57--75},
year={2002},
publisher={Springer}
}
@article{Drovandi2011,
title={Likelihood-free Bayesian estimation of multivariate quantile distributions},
author={Drovandi, Christopher C and Pettitt, Anthony N},
journal={Computational Statistics \& Data Analysis},
volume={55},
number={9},
pages={2541--2556},
year={2011},
publisher={Elsevier}
}
@book{Bowley1920,
title={Elements of Statistics},
author={Bowley, A.L.},
number={v. 2},
lccn={24012093},
series={Elements of Statistics},
year={1920},
publisher={P.S. King}
}
@article{Moors1988,
title={A quantile alternative for kurtosis},
author={Moors, JJA},
journal={Journal of the Royal Statistical Society: Series D (The Statistician)},
volume={37},
number={1},
pages={25--32},
year={1988},
publisher={Wiley Online Library}
}
@article{prangle2017,
title={gk: An R package for the g-and-k and generalised g-and-h distributions},
author={Prangle, Dennis},
journal={arXiv preprint arXiv:1706.06889},
year={2017}
}
@article{Bernton_2019,
title={Approximate Bayesian computation with the Wasserstein distance},
author={Bernton, Espen and Jacob, Pierre E and Gerber, Mathieu and Robert, Christian P},
journal={Journal of the Royal Statistical Society: Series B (Statistical Methodology)},
volume={81},
number={2},
pages={235--269},
year={2019},
publisher={Wiley Online Library}
}
@inproceedings{Jiang2018,
title={Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy},
author={Jiang, Bai},
booktitle={International conference on artificial intelligence and statistics},
pages={1711--1721},
year={2018},
organization={PMLR}
}
@inproceedings{Perez2008,
title={Kullback-Leibler divergence estimation of continuous distributions},
author={P{\'e}rez-Cruz, Fernando},
booktitle={2008 IEEE international symposium on information theory},
pages={1666--1670},
year={2008},
organization={IEEE}
}
@article{Bentley1975,
title={Multidimensional binary search trees used for associative searching},
author={Bentley, Jon Louis},
journal={Communications of the ACM},
volume={18},
number={9},
pages={509--517},
year={1975},
publisher={ACM New York, NY, USA}
}
@book{Sisson2018,
title={Handbook of Approximate Bayesian Computation},
author={Sisson, S.A. and Fan, Y. and Beaumont, M.},
isbn={9781439881514},
lccn={2019717481},
series={Chapman \& Hall/CRC Handbooks of Modern Statistical Methods},
year={2018},
publisher={CRC Press}
}
@article{Pudlo2015,
title={Reliable ABC model choice via random forests},
author={Pudlo, Pierre and Marin, Jean-Michel and Estoup, Arnaud and Cornuet, Jean-Marie and Gautier, Mathieu and Robert, Christian P},
journal={Bioinformatics},
volume={32},
number={6},
pages={859--866},
year={2016},
publisher={Oxford University Press}
}
@article{Beaumont2019,
title={Approximate Bayesian Computation},
author={Beaumont, Mark A.},
journal={Annual review of statistics and its application},
volume={6},
pages={379--403},
year={2019},
publisher={Annual Reviews}
}
@article{Beaumont2002,
title={Approximate Bayesian computation in population genetics},
author={Beaumont, Mark A. and Zhang, Wenyang and Balding, David J},
journal={Genetics},
volume={162},
number={4},
pages={2025--2035},
year={2002},
publisher={Oxford University Press}
}
@article{Beaumont2010,
title={Approximate Bayesian computation in evolution and ecology},
author={Beaumont, Mark A.},
journal={Annual review of ecology, evolution, and systematics},
volume={41},
pages={379--406},
year={2010},
publisher={Annual Reviews}
}
@article{Lintusaari2018,
title={Elfi: Engine for likelihood-free inference},
author={Lintusaari, Jarno and Vuollekoski, Henri and Kangasraasio, Antti and Skyt{\'e}n, Kusti and Jarvenpaa, Marko and Marttinen, Pekka and Gutmann, Michael U and Vehtari, Aki and Corander, Jukka and Kaski, Samuel},
journal={Journal of Machine Learning Research},
volume={19},
number={16},
pages={1--7},
year={2018}
}
@inproceedings{Dutta2017,
title={ABCpy: A user-friendly, extensible, and parallel library for approximate Bayesian computation},
author={Dutta, Ritabrata and Schoengens, Marcel and Onnela, Jukka-Pekka and Mira, Antonietta},
booktitle={Proceedings of the platform for advanced scientific computing conference},
pages={1--9},
year={2017}
}
@article{Klinger2018,
title={pyABC: distributed, likelihood-free inference},
author={Klinger, Emmanuel and Rickert, Dennis and Hasenauer, Jan},
journal={Bioinformatics},
volume={34},
number={20},
pages={3591--3593},
year={2018},
publisher={Oxford University Press}
}
@Manual{PalmerPenguins,
title = {palmerpenguins: Palmer Archipelago (Antarctica) penguin data},
author = {Allison Marie Horst and Alison Presmanes Hill and Kristen B Gorman},
year = {2020},
note = {R package version 0.1.0},
doi = {10.5281/zenodo.3960218},
url = {https://allisonhorst.github.io/palmerpenguins/},
}
@inproceedings{gradient,
title={Batch normalization: Accelerating deep network training by reducing internal covariate shift},
author={Ioffe, Sergey and Szegedy, Christian},
booktitle={International conference on machine learning},
pages={448--456},
year={2015},
organization={PMLR}
}
@book{fox_fox_2016,
title={Applied Regression Analysis and Generalized Linear Models},
author={Fox, J.},
isbn={9781483321318},
year={2015},
publisher={SAGE Publications}
}
@article{Robert2011,
title={Lack of confidence in approximate Bayesian computation model choice},
author={Robert, Christian P and Cornuet, Jean-Marie and Marin, Jean-Michel and Pillai, Natesh S},
journal={Proceedings of the National Academy of Sciences},
volume={108},
number={37},
pages={15112--15117},
year={2011},
publisher={National Acad Sciences}
}
@book{ROS,
title={Regression and Other Stories},
author={Gelman, A. and Hill, J. and Vehtari, A.},
isbn={9781107023987},
series={Analytical Methods for Social Research},
year={2020},
publisher={Cambridge University Press}
}
@article{LikehoodandPrior,
title={The prior can often only be understood in the context of the likelihood},
author={Gelman, Andrew and Simpson, Daniel and Betancourt, Michael},
journal={Entropy},
volume={19},
number={10},
pages={555},
year={2017},
publisher={Multidisciplinary Digital Publishing Institute}
}
@inproceedings{Collin2020,
title={Bringing ABC inference to the machine learning realm: AbcRanger, an optimized random forests library for ABC},
author={Collin, Fran{\c{c}}ois-David and Estoup, Arnaud and Marin, Jean-Michel and Raynal, Louis},
booktitle={JOBIM 2020},
volume={2020},
year={2020}
}
@article{gorman_williams_fraser_2014,
title={Ecological sexual dimorphism and environmental variability within a community of Antarctic penguins (genus Pygoscelis)},
author={Gorman, Kristen B and Williams, Tony D and Fraser, William R},
journal={PloS one},
volume={9},
number={3},
pages={e90081},
year={2014},
publisher={Public Library of Science San Francisco, USA}
}
@article{Liu2020,
title={Variable selection with ABC Bayesian forests},
author={Liu, Yi and Ro{\v{c}}kov{\'a}, Veronika and Wang, Yuexi},
journal={Journal of the Royal Statistical Society: Series B (Statistical Methodology)},
year={2019},
publisher={Wiley Online Library}
}
@inproceedings{Rockova2018,
title={On theory for BART},
author={Ro{\v{c}}kov{\'a}, Veronika and Saha, Enakshi},
booktitle={The 22nd International Conference on Artificial Intelligence and Statistics},
pages={2839--2848},
year={2019},
organization={PMLR}
}
@book{martin_2018,
title={Bayesian Analysis with Python: Introduction to Statistical Modeling and Probabilistic Programming Using PyMC3 and ArviZ, 2nd Edition},
author={Martin, O.},
isbn={9781789341652},
year={2018},
publisher={Packt Publishing}
}
@Manual{readingSkills,
title = {Party: A laboratory for recursive partytioning},
author = {Hothorn, Torsten and Hornik, Kurt and Strobl, Carolin and Zeileis, Achim},
year = {2010},
note = {R package version 1.3-7},
url = {https://CRAN.R-project.org/package=party},
}
@article{Horiguchi2020,
title={Assessing variable activity for Bayesian regression trees},
author={Horiguchi, Akira and Pratola, Matthew T and Santner, Thomas J},
journal={Reliability Engineering \& System Safety},
volume={207},
pages={107391},
year={2021},
publisher={Elsevier}
}
@article{Carlson2020,
title={embarcadero: Species distribution modelling with Bayesian additive regression trees in R},
author={Carlson, Colin J.},
journal={Methods in Ecology and Evolution},
volume={11},
number={7},
pages={850--858},
year={2020},
publisher={Wiley Online Library}
}
@article{Friedman2001,
title={Greedy function approximation: a gradient boosting machine},
author={Friedman, Jerome H},
journal={Annals of statistics},
pages={1189--1232},
year={2001},
publisher={JSTOR}
}
@article{Goldstein2014,
title={Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation},
author={Goldstein, Alex and Kapelner, Adam and Bleich, Justin and Pitkin, Emil},
journal={journal of Computational and Graphical Statistics},
volume={24},
number={1},
pages={44--65},
year={2015},
publisher={Taylor \& Francis}
}
@inproceedings{Molnar2020,
title={Interpretable machine learning--a brief history, state-of-the-art and challenges},
author={Molnar, Christoph and Casalicchio, Giuseppe and Bischl, Bernd},
booktitle={Joint European Conference on Machine Learning and Knowledge Discovery in Databases},
pages={417--431},
year={2020},
organization={Springer}
}
@book{Molnarbook,
title={Interpretable Machine Learning},
author={Molnar, C.},
isbn={9780244768522},
year={2020},
publisher={Lulu.com}
}
@article{Bleich2014,
title={Variable selection for BART: an application to gene regulation},
author={Bleich, Justin and Kapelner, Adam and George, Edward I and Jensen, Shane T},
journal={The Annals of Applied Statistics},
pages={1750--1781},
year={2014},
publisher={JSTOR}
}
@article{Sunnaker2013,
title={Approximate bayesian computation},
author={Sunn{\aa}ker, Mikael and Busetto, Alberto Giovanni and Numminen, Elina and Corander, Jukka and Foll, Matthieu and Dessimoz, Christophe},
journal={PLoS computational biology},
volume={9},
number={1},
pages={e1002803},
year={2013},
publisher={Public Library of Science San Francisco, USA}
}
@article{Gelman2020,
title={Bayesian workflow},
author={Gelman, Andrew and Vehtari, Aki and Simpson, Daniel and Margossian, Charles C and Carpenter, Bob and Yao, Yuling and Kennedy, Lauren and Gabry, Jonah and B{\"u}rkner, Paul-Christian and Modr{\'a}k, Martin},
journal={arXiv preprint arXiv:2011.01808},
year={2020}
}
@book{davidson-pilon_2015,
title={Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference},
author={Davidson-Pilon, C.},
isbn={9780133902921},
series={Addison-Wesley Data \& Analytics Series},
year={2015},
publisher={Pearson Education}
}
@article{gelman2005,
title={Analysis of variance—why it is more important than ever},
author={Gelman, Andrew},
journal={The annals of statistics},
volume={33},
number={1},
pages={1--53},
year={2005},
publisher={Institute of Mathematical Statistics}
}
@Manual{nlme,
title = {{nlme}: Linear and Nonlinear Mixed Effects Models},
author = {Jose Pinheiro and Douglas Bates and Saikat DebRoy and Deepayan Sarkar and {R Core Team}},
year = {2020},
note = {R package version 3.1-151},
url = {https://CRAN.R-project.org/package=nlme},
}
@article{lme4,
title={Fitting linear mixed-effects models using lme4},
author={Bates, Douglas and M{\"a}chler, Martin and Bolker, Ben and Walker, Steve},
journal={arXiv preprint arXiv:1406.5823},
year={2014}
}
@misc{gabry_goodrich_2020,
title={Estimating Generalized (Non-)Linear Models with Group-Specific Terms with rstanarm},
url={https://mc-stan.org/rstanarm/articles/glmer.html},
author={Gabry, Jonah and Goodrich, Ben},
year={2020},
month={6}
}
@article{brms,
title={brms: An R package for Bayesian multilevel models using Stan},
author={B{\"u}rkner, Paul-Christian},
journal={Journal of statistical software},
volume={80},
number={1},
pages={1--28},
year={2017}
}
@article{betancourt2013hamiltonian,
title={Hamiltonian Monte Carlo for hierarchical models},
author={Betancourt, Michael and Girolami, Mark},
journal={Current trends in Bayesian methodology with applications},
volume={79},
number={30},
pages={2--4},
year={2015},
publisher={CRC Press Boca Raton, FL}
}
@article{neal_2003,
title={Slice sampling},
author={Neal, Radford M},
journal={The annals of statistics},
volume={31},
number={3},
pages={705--767},
year={2003},
publisher={Institute of Mathematical Statistics}
}
@article{Gorinova_2019,
title={Probabilistic programming with densities in SlicStan: efficient, flexible, and deterministic},
author={Gorinova, Maria I and Gordon, Andrew D and Sutton, Charles},
journal={Proceedings of the ACM on Programming Languages},
volume={3},
number={POPL},
pages={1--30},
year={2019},
publisher={ACM New York, NY, USA}
}
@book{gelman_hill_2006,
title={Data Analysis Using Regression and Multilevel/Hierarchical Models},
author={Gelman, A. and Hill, J.},
isbn={9781139460934},
series={Analytical Methods for Social Research},
year={2006},
publisher={Cambridge University Press}
}
@article{willard2020minikanren,
title={miniKanren as a Tool for Symbolic Computation in Python},
author={Willard, Brandon T},
journal={arXiv preprint arXiv:2005.11644},
year={2020}
}
@article{Foreman_Mackey_2019,
title={emcee v3: A Python ensemble sampling toolkit for affine-invariant MCMC},
author={Foreman-Mackey, Daniel and Farr, Will M and Sinha, Manodeep and Archibald, Anne M and Hogg, David W and Sanders, Jeremy S and Zuntz, Joe and Williams, Peter KG and Nelson, Andrew RJ and de Val-Borro, Miguel and others},
journal={arXiv preprint arXiv:1911.07688},
year={2019}
}
@book{Rasmussen2005,
address = {Cambridge, Mass},
title = {Gaussian {Processes} for {Machine} {Learning}},
isbn = {978-0-262-18253-9},
language = {English},
publisher = {The MIT Press},
author = {Rasmussen, Carl Edward and Williams, Christopher K. I.},
year = {2005}
}
@book{Downey2014,
title = {Think {Stats}: {Exploratory} {Data} {Analysis}},
shorttitle = {Think {Stats}},
publisher = {O'Reilly Media;},
author = {Downey, Allen B.},
year = {2014}
}
@book{Kruschke2014,
title={Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan},
author={Kruschke, J.K.},
isbn={9780124058880},
lccn={2014011293},
series={Academic Press},
year={2015},
publisher={Academic Press}
}
@article{westfall2014,
title={Kurtosis as peakedness, 1905--2014. RIP},
author={Westfall, Peter H},
journal={The American Statistician},
volume={68},
number={3},
pages={191--195},
year={2014},
publisher={Taylor \& Francis}
}
@article{Duane1987,
title={Hybrid monte carlo},
author={Duane, Simon and Kennedy, Anthony D and Pendleton, Brian J and Roweth, Duncan},
journal={Physics letters B},
volume={195},
number={2},
pages={216--222},
year={1987},
publisher={Elsevier}
}
@book{Brooks2011,
title={Handbook of Markov Chain Monte Carlo},
author={Brooks, S. and Gelman, A. and Jones, G. and Meng, X.L.},
isbn={9781420079425},
series={Chapman \& Hall/CRC Handbooks of Modern Statistical Methods},
year={2011},
publisher={CRC Press}
}
@article{Betancourt2017,
title={A conceptual introduction to Hamiltonian Monte Carlo},
author={Betancourt, Michael},
journal={arXiv preprint arXiv:1701.02434},
year={2017}