Skip to content

Latest commit

 

History

History
48 lines (37 loc) · 1.25 KB

README.md

File metadata and controls

48 lines (37 loc) · 1.25 KB

GPT-J 6B inference on TensorRT with INT-8 precision

Repository contains inference example and accuracy validation of quantized GPT-J 6B TensorRT model. Prebuilt TensorRT engines are published on Hugging Face 🤗. Our example notebook automatically downloads the appropriate engine.

Currently published engines for the following GPUs only:

  • RTX 2080 Ti
  • RTX 3080 Ti
  • RTX 4090

ONNX model and build script will be published later.

Metrics:

TensorRT INT8+FP32 torch FP16 torch FP32
Lambada Acc 78.79% 79.17% -
Model size (GB) 8.5 12.1 24.2

Test environment

  • GPU RTX 4090
  • CPU 11th Gen Intel(R) Core(TM) i7-11700K
  • TensorRT 8.5.3.1
  • pytorch 1.13.1+cu116

Latency:

Input sequance length Number of generated tokens TensorRT INT8+FP32 ms torch FP16 ms Acceleration
64 64 1040 1610 1.55
64 128 2089 3224 1.54
64 256 4236 6479 1.53
128 64 1060 1619 1.53
128 128 2120 3241 1.53
128 256 4296 6510 1.52
256 64 1109 1640 1.49
256 128 2204 3276 1.49
256 256 4443 6571 1.49

Test environment

  • GPU RTX 4090
  • CPU 11th Gen Intel(R) Core(TM) i7-11700K
  • TensorRT 8.5.3.1
  • pytorch 1.13.1+cu116