forked from gnustep/libobjc2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sarray2.c
254 lines (239 loc) · 5.96 KB
/
sarray2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include "sarray2.h"
#include "visibility.h"
const static SparseArray EmptyArray = { 0, 0, .data[0 ... 255] = 0 };
const static SparseArray EmptyArray8 = { 8, 0, .data[0 ... 255] = (void*)&EmptyArray};
const static SparseArray EmptyArray16 = { 16, 0, .data[0 ... 255] = (void*)&EmptyArray8};
const static SparseArray EmptyArray24 = { 24, 0, .data[0 ... 255] = (void*)&EmptyArray16};
#define MAX_INDEX(sarray) (0xff)
// Tweak this value to trade speed for memory usage. Bigger values use more
// memory, but give faster lookups.
#define base_shift 8
#define base_mask ((1<<base_shift) - 1)
static void *EmptyChildForShift(uint32_t shift)
{
switch(shift)
{
default: UNREACHABLE("Broken sparse array");
case 8:
return (void*)&EmptyArray;
case 16:
return (void*)&EmptyArray8;
case 24:
return (void*)&EmptyArray16;
}
}
static void init_pointers(SparseArray * sarray)
{
if(sarray->shift != 0)
{
void *data = EmptyChildForShift(sarray->shift);
for(unsigned i=0 ; i<=MAX_INDEX(sarray) ; i++)
{
sarray->data[i] = data;
}
}
}
PRIVATE SparseArray * SparseArrayNewWithDepth(uint32_t depth)
{
SparseArray * sarray = calloc(1, sizeof(SparseArray));
sarray->refCount = 1;
sarray->shift = depth-base_shift;
init_pointers(sarray);
return sarray;
}
PRIVATE SparseArray *SparseArrayNew()
{
return SparseArrayNewWithDepth(32);
}
PRIVATE SparseArray *SparseArrayExpandingArray(SparseArray *sarray, uint32_t new_depth)
{
if (new_depth == sarray->shift)
{
return sarray;
}
assert(new_depth > sarray->shift);
// Expanding a child sarray has undefined results.
assert(sarray->refCount == 1);
SparseArray *new = calloc(1, sizeof(SparseArray));
new->refCount = 1;
new->shift = sarray->shift + 8;
new->data[0] = sarray;
void *data = EmptyChildForShift(new->shift);
for(unsigned i=1 ; i<=MAX_INDEX(sarray) ; i++)
{
new->data[i] = data;
}
// Now, any lookup in sarray for any value less than its capacity will have
// all non-zero values shifted away, resulting in 0. All lookups will
// therefore go to the new sarray.
return new;
}
static void *SparseArrayFind(SparseArray * sarray, uint32_t * index)
{
uint32_t j = MASK_INDEX((*index));
uint32_t max = MAX_INDEX(sarray);
if (sarray->shift == 0)
{
while (j<=max)
{
if (sarray->data[j] != SARRAY_EMPTY)
{
return sarray->data[j];
}
(*index)++;
j++;
}
}
else while (j<max)
{
// If the shift is not 0, then we need to recursively look at child
// nodes.
uint32_t zeromask = ~((0xff << sarray->shift) >> base_shift);
while (j<max)
{
//Look in child nodes
SparseArray *child = sarray->data[j];
// Skip over known-empty children
if ((&EmptyArray == child) ||
(&EmptyArray8 == child) ||
(&EmptyArray16 == child) ||
(&EmptyArray24 == child))
{
//Add 2^n to index so j is still correct
(*index) += 1<<sarray->shift;
//Zero off the next component of the index so we don't miss any.
*index &= zeromask;
}
else
{
// The recursive call will set index to the correct value for
// the next index, but won't update j
void * ret = SparseArrayFind(child, index);
if (ret != SARRAY_EMPTY)
{
return ret;
}
}
//Go to the next child
j++;
}
}
return SARRAY_EMPTY;
}
PRIVATE void *SparseArrayNext(SparseArray * sarray, uint32_t * idx)
{
(*idx)++;
return SparseArrayFind(sarray, idx);
}
PRIVATE void SparseArrayInsert(SparseArray * sarray, uint32_t index, void *value)
{
if (sarray->shift > 0)
{
uint32_t i = MASK_INDEX(index);
SparseArray *child = sarray->data[i];
if ((&EmptyArray == child) ||
(&EmptyArray8 == child) ||
(&EmptyArray16 == child) ||
(&EmptyArray24 == child))
{
// Insert missing nodes
SparseArray * newsarray = calloc(1, sizeof(SparseArray));
newsarray->refCount = 1;
if (base_shift >= sarray->shift)
{
newsarray->shift = 0;
}
else
{
newsarray->shift = sarray->shift - base_shift;
}
init_pointers(newsarray);
sarray->data[i] = newsarray;
child = newsarray;
}
else if (child->refCount > 1)
{
// Copy the copy-on-write part of the tree
sarray->data[i] = SparseArrayCopy(child);
SparseArrayDestroy(child);
child = sarray->data[i];
}
SparseArrayInsert(child, index, value);
}
else
{
sarray->data[MASK_INDEX(index)] = value;
}
}
PRIVATE SparseArray *SparseArrayCopy(SparseArray * sarray)
{
SparseArray *copy = calloc(sizeof(SparseArray), 1);
memcpy(copy, sarray, sizeof(SparseArray));
copy->refCount = 1;
// If the sarray has children, increase their refcounts and link them
if (sarray->shift > 0)
{
for (unsigned int i = 0 ; i<=MAX_INDEX(sarray); i++)
{
SparseArray *child = copy->data[i];
if (!(child == &EmptyArray ||
child == &EmptyArray8 ||
child == &EmptyArray16 ||
child == &EmptyArray24))
{
__sync_fetch_and_add(&child->refCount, 1);
}
// Non-lazy copy. Uncomment if debugging
// copy->data[i] = SparseArrayCopy(copy->data[i]);
}
}
return copy;
}
PRIVATE void SparseArrayDestroy(SparseArray * sarray)
{
// Don't really delete this sarray if its ref count is > 0
if (sarray == &EmptyArray ||
sarray == &EmptyArray8 ||
sarray == &EmptyArray16 ||
sarray == &EmptyArray24 ||
(__sync_sub_and_fetch(&sarray->refCount, 1) > 0))
{
return;
}
if(sarray->shift > 0)
{
for(uint32_t i=0 ; i<data_size ; i++)
{
SparseArrayDestroy((SparseArray*)sarray->data[i]);
}
}
free(sarray);
}
#if 0
// Unused function, but helpful when debugging.
PRIVATE int SparseArraySize(SparseArray *sarray)
{
int size = 0;
if (sarray->shift == 0)
{
return 256*sizeof(void*) + sizeof(SparseArray);
}
size += 256*sizeof(void*) + sizeof(SparseArray);
for(unsigned i=0 ; i<=MAX_INDEX(sarray) ; i++)
{
SparseArray *child = sarray->data[i];
if (child == &EmptyArray ||
child == &EmptyArray8 ||
child == &EmptyArray16)
{
continue;
}
size += SparseArraySize(child);
}
return size;
}
#endif