-
Notifications
You must be signed in to change notification settings - Fork 38
/
_area.py
676 lines (565 loc) · 22.3 KB
/
_area.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
"""Area operations on data cubes.
Allows for selecting data subsets using certain latitude and longitude
bounds; selecting geographical regions; constructing area averages; etc.
"""
import logging
import warnings
import fiona
import iris
import numpy as np
import shapely
import shapely.ops
from dask import array as da
from iris.exceptions import CoordinateNotFoundError
from ._ancillary_vars import (
add_ancillary_variable,
add_cell_measure,
remove_fx_variables,
)
from ._shared import (
get_iris_analysis_operation,
guess_bounds,
operator_accept_weights,
)
logger = logging.getLogger(__name__)
SHAPE_ID_KEYS = ('name', 'NAME', 'Name', 'id', 'ID')
def extract_region(cube, start_longitude, end_longitude, start_latitude,
end_latitude):
"""Extract a region from a cube.
Function that subsets a cube on a box (start_longitude, end_longitude,
start_latitude, end_latitude)
Parameters
----------
cube: iris.cube.Cube
input data cube.
start_longitude: float
Western boundary longitude.
end_longitude: float
Eastern boundary longitude.
start_latitude: float
Southern Boundary latitude.
end_latitude: float
Northern Boundary Latitude.
Returns
-------
iris.cube.Cube
smaller cube.
"""
if abs(start_latitude) > 90.:
raise ValueError(f"Invalid start_latitude: {start_latitude}")
if abs(end_latitude) > 90.:
raise ValueError(f"Invalid end_latitude: {end_latitude}")
if cube.coord('latitude').ndim == 1:
# Iris check if any point of the cell is inside the region
# To check only the center, ignore_bounds must be set to
# True (default) is False
region_subset = cube.intersection(
longitude=(start_longitude, end_longitude),
latitude=(start_latitude, end_latitude),
ignore_bounds=True,
)
region_subset = region_subset.intersection(longitude=(0., 360.))
else:
region_subset = _extract_irregular_region(
cube,
start_longitude,
end_longitude,
start_latitude,
end_latitude,
)
return region_subset
def _extract_irregular_region(cube, start_longitude, end_longitude,
start_latitude, end_latitude):
"""Extract a region from a cube on an irregular grid."""
# Convert longitudes to valid range
if start_longitude != 360.:
start_longitude %= 360.
if end_longitude != 360.:
end_longitude %= 360.
# Select coordinates inside the region
lats = cube.coord('latitude').points
lons = (cube.coord('longitude').points + 360.) % 360.
if start_longitude <= end_longitude:
select_lons = (lons >= start_longitude) & (lons <= end_longitude)
else:
select_lons = (lons >= start_longitude) | (lons <= end_longitude)
if start_latitude <= end_latitude:
select_lats = (lats >= start_latitude) & (lats <= end_latitude)
else:
select_lats = (lats >= start_latitude) | (lats <= end_latitude)
selection = select_lats & select_lons
# Crop the selection, but keep rectangular shape
i_range, j_range = selection.nonzero()
if i_range.size == 0:
raise ValueError("No data points available in selected region")
i_min, i_max = i_range.min(), i_range.max()
j_min, j_max = j_range.min(), j_range.max()
i_slice, j_slice = slice(i_min, i_max + 1), slice(j_min, j_max + 1)
cube = cube[..., i_slice, j_slice]
selection = selection[i_slice, j_slice]
# Mask remaining coordinates outside region
mask = da.broadcast_to(~selection, cube.shape)
cube.data = da.ma.masked_where(mask, cube.core_data())
return cube
def zonal_statistics(cube, operator):
"""Compute zonal statistics.
Parameters
----------
cube: iris.cube.Cube
input cube.
operator: str, optional
Select operator to apply.
Available operators: 'mean', 'median', 'std_dev', 'sum', 'min',
'max', 'rms'.
Returns
-------
iris.cube.Cube
Zonal statistics cube.
Raises
------
ValueError
Error raised if computation on irregular grids is attempted.
Zonal statistics not yet implemented for irregular grids.
"""
if cube.coord('longitude').points.ndim < 2:
operation = get_iris_analysis_operation(operator)
cube = cube.collapsed('longitude', operation)
cube.data = cube.core_data().astype(np.float32, casting='same_kind')
return cube
msg = ("Zonal statistics on irregular grids not yet implemnted")
raise ValueError(msg)
def meridional_statistics(cube, operator):
"""Compute meridional statistics.
Parameters
----------
cube: iris.cube.Cube
input cube.
operator: str, optional
Select operator to apply.
Available operators: 'mean', 'median', 'std_dev', 'sum', 'min',
'max', 'rms'.
Returns
-------
iris.cube.Cube
Meridional statistics cube.
Raises
------
ValueError
Error raised if computation on irregular grids is attempted.
Zonal statistics not yet implemented for irregular grids.
"""
if cube.coord('latitude').points.ndim < 2:
operation = get_iris_analysis_operation(operator)
cube = cube.collapsed('latitude', operation)
cube.data = cube.core_data().astype(np.float32, casting='same_kind')
return cube
msg = ("Meridional statistics on irregular grids not yet implemented")
raise ValueError(msg)
def compute_area_weights(cube):
"""Compute area weights."""
with warnings.catch_warnings(record=True) as caught_warnings:
warnings.filterwarnings(
'always',
message="Using DEFAULT_SPHERICAL_EARTH_RADIUS.",
category=UserWarning,
module='iris.analysis.cartography',
)
weights = iris.analysis.cartography.area_weights(cube)
for warning in caught_warnings:
logger.debug(
"%s while computing area weights of the following cube:\n%s",
warning.message, cube)
return weights
def area_statistics(cube, operator):
"""Apply a statistical operator in the horizontal direction.
The average in the horizontal direction. We assume that the
horizontal directions are ['longitude', 'latutude'].
This function can be used to apply
several different operations in the horizontal plane: mean, standard
deviation, median variance, minimum and maximum. These options are
specified using the `operator` argument and the following key word
arguments:
+------------+--------------------------------------------------+
| `mean` | Area weighted mean. |
+------------+--------------------------------------------------+
| `median` | Median (not area weighted) |
+------------+--------------------------------------------------+
| `std_dev` | Standard Deviation (not area weighted) |
+------------+--------------------------------------------------+
| `sum` | Area weighted sum. |
+------------+--------------------------------------------------+
| `variance` | Variance (not area weighted) |
+------------+--------------------------------------------------+
| `min`: | Minimum value |
+------------+--------------------------------------------------+
| `max` | Maximum value |
+------------+--------------------------------------------------+
| `rms` | Area weighted root mean square. |
+------------+--------------------------------------------------+
Parameters
----------
cube: iris.cube.Cube
Input cube.
operator: str
The operation, options: mean, median, min, max, std_dev, sum,
variance, rms.
Returns
-------
iris.cube.Cube
collapsed cube.
Raises
------
iris.exceptions.CoordinateMultiDimError
Exception for latitude axis with dim > 2.
ValueError
if input data cube has different shape than grid area weights
"""
original_dtype = cube.dtype
grid_areas = None
try:
grid_areas = cube.cell_measure('cell_area').core_data()
except iris.exceptions.CellMeasureNotFoundError:
logger.debug(
'Cell measure "cell_area" not found in cube %s. '
'Check fx_file availability.', cube.summary(shorten=True))
logger.debug('Attempting to calculate grid cell area...')
else:
grid_areas = da.broadcast_to(grid_areas, cube.shape)
if grid_areas is None and cube.coord('latitude').points.ndim == 2:
coord_names = [coord.standard_name for coord in cube.coords()]
if 'grid_latitude' in coord_names and 'grid_longitude' in coord_names:
cube = guess_bounds(cube, ['grid_latitude', 'grid_longitude'])
cube_tmp = cube.copy()
cube_tmp.remove_coord('latitude')
cube_tmp.coord('grid_latitude').rename('latitude')
cube_tmp.remove_coord('longitude')
cube_tmp.coord('grid_longitude').rename('longitude')
grid_areas = compute_area_weights(cube_tmp)
logger.debug('Calculated grid area shape: %s', grid_areas.shape)
else:
logger.error(
'fx_file needed to calculate grid cell area for irregular '
'grids.')
raise iris.exceptions.CoordinateMultiDimError(
cube.coord('latitude'))
coord_names = ['longitude', 'latitude']
if grid_areas is None:
cube = guess_bounds(cube, coord_names)
grid_areas = compute_area_weights(cube)
logger.debug('Calculated grid area shape: %s', grid_areas.shape)
if cube.shape != grid_areas.shape:
raise ValueError('Cube shape ({}) doesn`t match grid area shape '
'({})'.format(cube.shape, grid_areas.shape))
operation = get_iris_analysis_operation(operator)
# TODO: implement weighted stdev, median, s var when available in iris.
# See iris issue: https://github.com/SciTools/iris/issues/3208
if operator_accept_weights(operator):
result = cube.collapsed(coord_names, operation, weights=grid_areas)
else:
# Many IRIS analysis functions do not accept weights arguments.
result = cube.collapsed(coord_names, operation)
new_dtype = result.dtype
if original_dtype != new_dtype:
logger.debug(
"area_statistics changed dtype from "
"%s to %s, changing back", original_dtype, new_dtype)
result.data = result.core_data().astype(original_dtype)
return result
def extract_named_regions(cube, regions):
"""Extract a specific named region.
The region coordinate exist in certain CMIP datasets.
This preprocessor allows a specific named regions to be extracted.
Parameters
----------
cube: iris.cube.Cube
input cube.
regions: str, list
A region or list of regions to extract.
Returns
-------
iris.cube.Cube
collapsed cube.
Raises
------
ValueError
regions is not list or tuple or set.
ValueError
region not included in cube.
"""
# Make sure regions is a list of strings
if isinstance(regions, str):
regions = [regions]
if not isinstance(regions, (list, tuple, set)):
raise TypeError(
'Regions "{}" is not an acceptable format.'.format(regions))
available_regions = set(cube.coord('region').points)
invalid_regions = set(regions) - available_regions
if invalid_regions:
raise ValueError('Region(s) "{}" not in cube region(s): {}'.format(
invalid_regions, available_regions))
constraints = iris.Constraint(region=lambda r: r in regions)
cube = cube.extract(constraint=constraints)
return cube
def _crop_cube(cube,
start_longitude,
start_latitude,
end_longitude,
end_latitude,
cmor_coords=True):
"""Crop cubes on a cartesian grid."""
lon_coord = cube.coord(axis='X')
lat_coord = cube.coord(axis='Y')
if lon_coord.ndim == 1 and lat_coord.ndim == 1:
# add a padding of one cell around the cropped cube
lon_bound = lon_coord.core_bounds()[0]
lon_step = lon_bound[1] - lon_bound[0]
start_longitude -= lon_step
if not cmor_coords:
if start_longitude < -180.:
start_longitude = -180.
else:
if start_longitude < 0:
start_longitude = 0
end_longitude += lon_step
if not cmor_coords:
if end_longitude > 180.:
end_longitude = 180.
else:
if end_longitude > 360:
end_longitude = 360.
lat_bound = lat_coord.core_bounds()[0]
lat_step = lat_bound[1] - lat_bound[0]
start_latitude -= lat_step
if start_latitude < -90:
start_latitude = -90.
end_latitude += lat_step
if end_latitude > 90.:
end_latitude = 90.
cube = extract_region(cube, start_longitude, end_longitude,
start_latitude, end_latitude)
return cube
def _select_representative_point(shape, lon, lat):
"""Select a representative point for `shape` from `lon` and `lat`."""
representative_point = shape.representative_point()
points = shapely.geometry.MultiPoint(
np.stack((np.ravel(lon), np.ravel(lat)), axis=1))
nearest_point = shapely.ops.nearest_points(points, representative_point)[0]
nearest_lon, nearest_lat = nearest_point.coords[0]
select = (lon == nearest_lon) & (lat == nearest_lat)
return select
def _correct_coords_from_shapefile(cube, cmor_coords, pad_north_pole,
pad_hawaii):
"""Get correct lat and lon from shapefile."""
lon = cube.coord(axis='X').points
lat = cube.coord(axis='Y').points
if cube.coord(axis='X').ndim < 2:
lon, lat = np.meshgrid(lon, lat, copy=False)
if not cmor_coords:
# Wrap around longitude coordinate to match data
lon = lon.copy() # ValueError: assignment destination is read-only
lon[lon >= 180.] -= 360.
# the NE mask may not have points at x = -180 and y = +/-90
# so we will fool it and apply the mask at (-179, -89, 89) instead
if pad_hawaii:
lon = np.where(lon == -180., lon + 1., lon)
if pad_north_pole:
lat_0 = np.where(lat == -90., lat + 1., lat)
lat = np.where(lat_0 == 90., lat_0 - 1., lat_0)
return lon, lat
def _get_masks_from_geometries(geometries,
lon,
lat,
method='contains',
decomposed=False,
ids=None):
if method not in {'contains', 'representative'}:
raise ValueError(
"Invalid value for `method`. Choose from 'contains', ",
"'representative'.")
selections = dict()
if ids:
ids = [str(id_) for id_ in ids]
for i, item in enumerate(geometries):
for id_prop in SHAPE_ID_KEYS:
if id_prop in item['properties']:
id_ = str(item['properties'][id_prop])
break
else:
id_ = str(i)
logger.debug('Shape "%s" found', id_)
if ids and id_ not in ids:
continue
selections[id_] = _get_shape(lon, lat, method, item)
if ids:
missing = set(ids) - set(selections.keys())
if missing:
raise ValueError(f'Shapes {" ".join(missing)!r} not found')
if not decomposed and len(selections) > 1:
return _merge_shapes(selections, lat.shape)
return selections
def _geometry_matches_ids(geometry: dict, ids: list):
"""Returns True if `geometry` matches one of the `ids`."""
props = geometry['properties']
geom_id = [props.get(key, None) for key in SHAPE_ID_KEYS]
geom_id = [key for key in geom_id if key is not None]
if not geom_id:
raise KeyError(f'{props} dict has no `name` or `id` key')
geom_id = geom_id[0]
return geom_id in ids
def _get_bounds(geometries, ids=None):
"""Get bounds from the subset of geometries defined by `ids`.
Parameters
----------
geometries : fiona.Collection
Fiona collection of shapes (geometries).
ids : tuple of str, optional
List of ids to select from geometry collection. If None,
return global bounds (``geometries.bounds``)
Returns
-------
lat_min, lon_min, lat_max, lon_max
Returns coordinates deliminating bounding box for shape ids.
"""
if not ids:
return geometries.bounds
subset = [geom for geom in geometries if _geometry_matches_ids(geom, ids)]
all_points = [
np.hstack(geom['geometry']['coordinates']) for geom in subset
]
all_points = np.vstack(all_points)
lon_max, lat_max = all_points.max(axis=0)
lon_min, lat_min = all_points.min(axis=0)
return lon_min, lat_min, lon_max, lat_max
def _get_shape(lon, lat, method, item):
shape = shapely.geometry.shape(item['geometry'])
if method == 'contains':
select = shapely.vectorized.contains(shape, lon, lat)
if method == 'representative' or not select.any():
select = _select_representative_point(shape, lon, lat)
return select
def _merge_shapes(selections, shape):
selection = np.zeros(shape, dtype=bool)
for select in selections.values():
selection |= select
return {0: selection}
def fix_coordinate_ordering(cube):
"""Transpose the dimensions.
This is done such that the order of dimension is
in standard order, ie:
[time] [shape_id] [other_coordinates] latitude longitude
where dimensions between brackets are optional.
Parameters
----------
cube: iris.cube.Cube
input cube.
Returns
-------
iris.cube.Cube
Cube with dimensions transposed to standard order
"""
try:
time_dim = cube.coord_dims('time')
except CoordinateNotFoundError:
time_dim = ()
try:
shape_dim = cube.coord_dims('shape_id')
except CoordinateNotFoundError:
shape_dim = ()
other = list(range(len(cube.shape)))
for dim in [time_dim, shape_dim]:
for i in dim:
other.remove(i)
other = tuple(other)
order = time_dim + shape_dim + other
cube.transpose(new_order=order)
return cube
def extract_shape(cube,
shapefile,
method='contains',
crop=True,
decomposed=False,
ids=None):
"""Extract a region defined by a shapefile.
Note that this function does not work for shapes crossing the
prime meridian or poles.
Parameters
----------
cube: iris.cube.Cube
input cube.
shapefile: str
A shapefile defining the region(s) to extract.
method: str, optional
Select all points contained by the shape or select a single
representative point. Choose either 'contains' or 'representative'.
If 'contains' is used, but not a single grid point is contained by the
shape, a representative point will selected.
crop: bool, optional
Crop the resulting cube using `extract_region()`. Note that data on
irregular grids will not be cropped.
decomposed: bool, optional
Whether or not to retain the sub shapes of the shapefile in the output.
If this is set to True, the output cube has a dimension for the sub
shapes.
ids: list(str), optional
List of shapes to be read from the file. The ids are assigned from
the attributes 'name' or 'id' (in that priority order) if present in
the file or correspond to the reading order if not.
Returns
-------
iris.cube.Cube
Cube containing the extracted region.
See Also
--------
extract_region : Extract a region from a cube.
"""
with fiona.open(shapefile) as geometries:
# get parameters specific to the shapefile (NE used case
# eg longitudes [-180, 180] or latitude missing
# or overflowing edges)
cmor_coords = True
pad_north_pole = False
pad_hawaii = False
if geometries.bounds[0] < 0:
cmor_coords = False
if geometries.bounds[1] > -90. and geometries.bounds[1] < -85.:
pad_north_pole = True
if geometries.bounds[0] > -180. and geometries.bounds[0] < 179.:
pad_hawaii = True
if crop:
lon_min, lat_min, lon_max, lat_max = _get_bounds(
geometries=geometries,
ids=ids,
)
cube = _crop_cube(cube,
start_longitude=lon_min,
start_latitude=lat_min,
end_longitude=lon_max,
end_latitude=lat_max,
cmor_coords=cmor_coords)
lon, lat = _correct_coords_from_shapefile(cube, cmor_coords,
pad_north_pole, pad_hawaii)
selections = _get_masks_from_geometries(geometries,
lon,
lat,
method=method,
decomposed=decomposed,
ids=ids)
return _mask_cube(cube, selections)
def _mask_cube(cube, selections):
cubelist = iris.cube.CubeList()
for id_, select in selections.items():
_cube = cube.copy()
remove_fx_variables(_cube)
_cube.add_aux_coord(
iris.coords.AuxCoord(id_, units='no_unit', long_name="shape_id"))
select = da.broadcast_to(select, _cube.shape)
_cube.data = da.ma.masked_where(~select, _cube.core_data())
cubelist.append(_cube)
result = fix_coordinate_ordering(cubelist.merge_cube())
if cube.cell_measures():
for measure in cube.cell_measures():
add_cell_measure(result, measure, measure.measure)
if cube.ancillary_variables():
for ancillary_variable in cube.ancillary_variables():
add_ancillary_variable(result, ancillary_variable)
return result