diff --git a/environment.yml b/environment.yml index 21918a1c46..6405b6ca57 100644 --- a/environment.yml +++ b/environment.yml @@ -19,7 +19,7 @@ dependencies: - geopy - humanfriendly - importlib_metadata # required for Python < 3.10 - - iris >3.8.0 + - iris >=3.9.0 - iris-esmf-regrid >=0.10.0 # github.com/SciTools-incubator/iris-esmf-regrid/pull/342 - isodate - jinja2 diff --git a/esmvalcore/preprocessor/_mask.py b/esmvalcore/preprocessor/_mask.py index c0e8348d77..cdedcc6391 100644 --- a/esmvalcore/preprocessor/_mask.py +++ b/esmvalcore/preprocessor/_mask.py @@ -4,6 +4,7 @@ masking with ancillary variables, masking with Natural Earth shapefiles (land or ocean), masking on thresholds, missing values masking. """ +from __future__ import annotations import logging import os @@ -323,7 +324,14 @@ def _mask_with_shp(cube, shapefilename, region_indices=None): return cube -def count_spells(data, threshold, axis, spell_length): +def count_spells( + data: np.ndarray | da.Array, + threshold: float | None, + axis: int, + spell_length, +) -> np.ndarray | da.Array: + # Copied from: + # https://scitools-iris.readthedocs.io/en/stable/generated/gallery/general/plot_custom_aggregation.html """Count data occurrences. Define a function to perform the custom statistical operation. @@ -338,10 +346,10 @@ def count_spells(data, threshold, axis, spell_length): Parameters ---------- - data: ndarray + data: raw data to be compared with value threshold. - threshold: float + threshold: threshold point for 'significant' datapoints. axis: int @@ -353,15 +361,17 @@ def count_spells(data, threshold, axis, spell_length): Returns ------- - int + :obj:`numpy.ndarray` or :obj:`dask.array.Array` Number of counts. """ if axis < 0: # just cope with negative axis numbers axis += data.ndim # Threshold the data to find the 'significant' points. + array_module = da if isinstance(data, da.Array) else np if not threshold: - data_hits = np.ones_like(data, dtype=bool) + # Keeps the mask of the input data. + data_hits = array_module.ma.ones_like(data, dtype=bool) else: data_hits = data > float(threshold) @@ -371,17 +381,16 @@ def count_spells(data, threshold, axis, spell_length): # if you want overlapping windows set the step to be m*spell_length # where m is a float ############################################################### - hit_windows = rolling_window(data_hits, - window=spell_length, - step=spell_length, - axis=axis) - + hit_windows = rolling_window( + data_hits, + window=spell_length, + step=spell_length, + axis=axis, + ) # Find the windows "full of True-s" (along the added 'window axis'). - full_windows = np.all(hit_windows, axis=axis + 1) - + full_windows = array_module.all(hit_windows, axis=axis + 1) # Count points fulfilling the condition (along the time axis). - spell_point_counts = np.sum(full_windows, axis=axis, dtype=int) - + spell_point_counts = array_module.sum(full_windows, axis=axis, dtype=int) return spell_point_counts @@ -572,10 +581,12 @@ def mask_multimodel(products): f"got {product_types}") -def mask_fillvalues(products, - threshold_fraction, - min_value=None, - time_window=1): +def mask_fillvalues( + products, + threshold_fraction: float, + min_value: float | None = None, + time_window: int = 1, +): """Compute and apply a multi-dataset fillvalues mask. Construct the mask that fills a certain time window with missing values @@ -590,15 +601,15 @@ def mask_fillvalues(products, products: iris.cube.Cube data products to be masked. - threshold_fraction: float + threshold_fraction: fractional threshold to be used as argument for Aggregator. Must be between 0 and 1. - min_value: float + min_value: minimum value threshold; default None If default, no thresholding applied so the full mask will be selected. - time_window: float + time_window: time window to compute missing data counts; default set to 1. Returns @@ -611,48 +622,58 @@ def mask_fillvalues(products, NotImplementedError Implementation missing for data with higher dimensionality than 4. """ - combined_mask = None + array_module = da if any(c.has_lazy_data() for p in products + for c in p.cubes) else np - logger.debug("Creating fillvalues mask") - used = set() + combined_mask = None for product in products: - for cube in product.cubes: - cube.data = np.ma.fix_invalid(cube.data, copy=False) - mask = _get_fillvalues_mask(cube, threshold_fraction, min_value, - time_window) + for i, cube in enumerate(product.cubes): + cube = cube.copy() + product.cubes[i] = cube + cube.data = array_module.ma.fix_invalid(cube.core_data()) + mask = _get_fillvalues_mask( + cube, + threshold_fraction, + min_value, + time_window, + ) if combined_mask is None: - combined_mask = np.zeros_like(mask) + combined_mask = array_module.zeros_like(mask) # Select only valid (not all masked) pressure levels - n_dims = len(mask.shape) - if n_dims == 2: - valid = ~np.all(mask) - if valid: - combined_mask |= mask - used.add(product) - elif n_dims == 3: - valid = ~np.all(mask, axis=(1, 2)) - combined_mask[valid] |= mask[valid] - if np.any(valid): - used.add(product) + if mask.ndim in (2, 3): + valid = ~mask.all(axis=(-2, -1), keepdims=True) else: raise NotImplementedError( - f"Unable to handle {n_dims} dimensional data" + f"Unable to handle {mask.ndim} dimensional data" ) + combined_mask = array_module.where( + valid, + combined_mask | mask, + combined_mask, + ) - if np.any(combined_mask): - logger.debug("Applying fillvalues mask") - used = {p.copy_provenance() for p in used} - for product in products: - for cube in product.cubes: - cube.data.mask |= combined_mask - for other in used: - if other.filename != product.filename: - product.wasderivedfrom(other) + for product in products: + for cube in product.cubes: + array = cube.core_data() + data = array_module.ma.getdata(array) + mask = array_module.ma.getmaskarray(array) | combined_mask + cube.data = array_module.ma.masked_array(data, mask) + + # Record provenance + input_products = {p.copy_provenance() for p in products} + for other in input_products: + if other.filename != product.filename: + product.wasderivedfrom(other) return products -def _get_fillvalues_mask(cube, threshold_fraction, min_value, time_window): +def _get_fillvalues_mask( + cube: iris.cube.Cube, + threshold_fraction: float, + min_value: float | None, + time_window: int, +) -> np.ndarray | da.Array: """Compute the per-model missing values mask. Construct the mask that fills a certain time window with missing @@ -662,7 +683,6 @@ def _get_fillvalues_mask(cube, threshold_fraction, min_value, time_window): counts the number of valid (unmasked) data points within that window; a simple value thresholding is also applied if needed. """ - # basic checks if threshold_fraction < 0 or threshold_fraction > 1.0: raise ValueError( f"Fraction of missing values {threshold_fraction} should be " @@ -678,19 +698,24 @@ def _get_fillvalues_mask(cube, threshold_fraction, min_value, time_window): counts_threshold = int(max_counts_per_time_window * threshold_fraction) # Make an aggregator - spell_count = Aggregator('spell_count', - count_spells, - units_func=lambda units: 1) + spell_count = Aggregator( + 'spell_count', + count_spells, + lazy_func=count_spells, + units_func=lambda units: 1, + ) # Calculate the statistic. - counts_windowed_cube = cube.collapsed('time', - spell_count, - threshold=min_value, - spell_length=time_window) + counts_windowed_cube = cube.collapsed( + 'time', + spell_count, + threshold=min_value, + spell_length=time_window, + ) # Create mask - mask = counts_windowed_cube.data < counts_threshold - if np.ma.isMaskedArray(mask): - mask = mask.data | mask.mask + mask = counts_windowed_cube.core_data() < counts_threshold + array_module = da if isinstance(mask, da.Array) else np + mask = array_module.ma.filled(mask, True) return mask diff --git a/setup.py b/setup.py index b77cc27247..9438202769 100755 --- a/setup.py +++ b/setup.py @@ -56,9 +56,7 @@ 'pyyaml', 'requests', 'scipy>=1.6', - # See the following issue for info on the iris pin below: - # https://github.com/ESMValGroup/ESMValCore/issues/2407 - 'scitools-iris>3.8.0', + 'scitools-iris>=3.9.0', 'shapely>=2.0.0', 'stratify>=0.3', 'yamale', diff --git a/tests/integration/preprocessor/_mask/test_mask.py b/tests/integration/preprocessor/_mask/test_mask.py index 298dc3fb22..4e5e51167b 100644 --- a/tests/integration/preprocessor/_mask/test_mask.py +++ b/tests/integration/preprocessor/_mask/test_mask.py @@ -182,13 +182,17 @@ def test_mask_landseaice(self): np.ma.set_fill_value(expected, 1e+20) assert_array_equal(result_ice.data, expected) - def test_mask_fillvalues(self, mocker): + @pytest.mark.parametrize('lazy', [True, False]) + def test_mask_fillvalues(self, mocker, lazy): """Test the fillvalues mask: func mask_fillvalues.""" data_1 = data_2 = self.mock_data data_2.mask = np.ones((4, 3, 3), bool) coords_spec = [(self.times, 0), (self.lats, 1), (self.lons, 2)] cube_1 = iris.cube.Cube(data_1, dim_coords_and_dims=coords_spec) cube_2 = iris.cube.Cube(data_2, dim_coords_and_dims=coords_spec) + if lazy: + cube_1.data = cube_1.lazy_data().rechunk((2, None, None)) + cube_2.data = cube_2.lazy_data() filename_1 = 'file1.nc' filename_2 = 'file2.nc' product_1 = mocker.create_autospec( @@ -215,10 +219,17 @@ def test_mask_fillvalues(self, mocker): result_1 = product.cubes[0] if product.filename == filename_2: result_2 = product.cubes[0] + + assert cube_1.has_lazy_data() == lazy + assert cube_2.has_lazy_data() == lazy + assert result_1.has_lazy_data() == lazy + assert result_2.has_lazy_data() == lazy + assert_array_equal(result_2.data.mask, data_2.mask) assert_array_equal(result_1.data, data_1) - def test_mask_fillvalues_zero_threshold(self, mocker): + @pytest.mark.parametrize('lazy', [True, False]) + def test_mask_fillvalues_zero_threshold(self, mocker, lazy): """Test the fillvalues mask: func mask_fillvalues for 0-threshold.""" data_1 = self.mock_data data_2 = self.mock_data[0:3] @@ -232,6 +243,10 @@ def test_mask_fillvalues_zero_threshold(self, mocker): coords_spec2 = [(self.time2, 0), (self.lats, 1), (self.lons, 2)] cube_1 = iris.cube.Cube(data_1, dim_coords_and_dims=coords_spec) cube_2 = iris.cube.Cube(data_2, dim_coords_and_dims=coords_spec2) + if lazy: + cube_1.data = cube_1.lazy_data().rechunk((2, None, None)) + cube_2.data = cube_2.lazy_data() + filename_1 = Path('file1.nc') filename_2 = Path('file2.nc') product_1 = mocker.create_autospec( @@ -255,6 +270,12 @@ def test_mask_fillvalues_zero_threshold(self, mocker): result_1 = product.cubes[0] if product.filename == filename_2: result_2 = product.cubes[0] + + assert cube_1.has_lazy_data() == lazy + assert cube_2.has_lazy_data() == lazy + assert result_1.has_lazy_data() == lazy + assert result_2.has_lazy_data() == lazy + # identical masks assert_array_equal( result_2.data[0, ...].mask, @@ -265,7 +286,8 @@ def test_mask_fillvalues_zero_threshold(self, mocker): assert_array_equal(result_1[1:2].data.mask, cumulative_mask) assert_array_equal(result_2[2:3].data.mask, cumulative_mask) - def test_mask_fillvalues_min_value_none(self, mocker): + @pytest.mark.parametrize('lazy', [True, False]) + def test_mask_fillvalues_min_value_none(self, mocker, lazy): """Test ``mask_fillvalues`` for min_value=None.""" # We use non-masked data here and explicitly set some values to 0 here # since this caused problems in the past, see @@ -278,6 +300,10 @@ def test_mask_fillvalues_min_value_none(self, mocker): coords_spec2 = [(self.time2, 0), (self.lats, 1), (self.lons, 2)] cube_1 = iris.cube.Cube(data_1, dim_coords_and_dims=coords_spec) cube_2 = iris.cube.Cube(data_2, dim_coords_and_dims=coords_spec2) + if lazy: + cube_1.data = cube_1.lazy_data().rechunk((2, None, None)) + cube_2.data = cube_2.lazy_data() + filename_1 = Path('file1.nc') filename_2 = Path('file2.nc') @@ -303,10 +329,13 @@ def test_mask_fillvalues_min_value_none(self, mocker): min_value=None, ) + assert cube_1.has_lazy_data() == lazy + assert cube_2.has_lazy_data() == lazy assert len(results) == 2 for product in results: if product.filename in (filename_1, filename_2): assert len(product.cubes) == 1 + assert product.cubes[0].has_lazy_data() == lazy assert not np.ma.is_masked(product.cubes[0].data) else: assert False, f"Invalid filename: {product.filename}" diff --git a/tests/unit/preprocessor/_mask/test_mask.py b/tests/unit/preprocessor/_mask/test_mask.py index a3131c6052..44cb0246f9 100644 --- a/tests/unit/preprocessor/_mask/test_mask.py +++ b/tests/unit/preprocessor/_mask/test_mask.py @@ -5,6 +5,7 @@ import numpy as np import iris +import iris.fileformats import tests from cf_units import Unit from esmvalcore.preprocessor._mask import (_apply_fx_mask,