
  

Caching ESMvalTool results
S.Sénési – jan 2022

CliMAF implements a results cache which proved to be 
useful and handy 

Similar principles could be applied to ESMValTool



  

CliMAF results handling 

● CliMAF objects are either graphic or numeric
● CliMAF handles a symbolic expression for each object (CRS – CliMAF Reference Syntax expression)

– The expression fully defines the object. It is built step-wise during object construction (this actually implements 
provenance handling)

– An expression interpreted by python (with CliMAF extension) returns the actual CliMAF object, which can be 
evaluated to a file result.

– The syntax allows user scripts to have multiple outputs and to give them distinct labels (or symbolic names)
– Example : 

principal_components(ds(project=CMIP6, experiment=historical, variable=’tas’, period=’2012-2013’, ...)).first_eigen

● The expression translates to a filename in CliMAF cache
– This, using a secure hash digest of the CRS expression (hashlib.sha224)
– User is free to use this filename rather as a (hard or soft) link to its choice of filename

● CliMAF systematically stores results in cache and checks cache content for avoiding to re-compute an 
object
– Escape mechanics do exist 



  

ESMValTool results handling

● ESMValTool results are defined by a cascade : 
– recipes include one or more diagnostics and define datasets
– variables of datasets underwent some preprocessing(s)
– preprocessing results feed scripts
– more complex cases are allowed (ancestor tasks)

● Scripts may create multiple outputs, which are described after run, through a provenance file, by a caption 
and ancestors.

● ESMValTool has no way to anticipate which (or even how many) results will be created ; it gets informed after 
run by the provenance file.

● When faced with multiple outputs, it cannot ‘interpret’ which is what (captions have no convention for that)
● However combining recipe parameters (for pre-processings and scripts) and recipe structure, plus ancestors, 

basically allows to fully define each script run, before run



  

Caching ESMValTool results

● Basic need is that scripts generating multiple outputs provide a distinct label for each output

Through some kind of declaration, that link such labels to output filenames 
● And that scripts declare when they use only a part of ancestor’s tasks output (using those labels)
● A syntax for expressions fully defining scripts results would have to be designed (and coded) 

– Either use recipe structure plus output labels

Syntax must not distinguish results which are identical :
– define a canonical form (e.g. for parameters order), 
– superfluous recipe parameters should not be part of the definition
– forbid default parameter values (or declare them) …

– Or serialize ordered provenance trees provided they can also be computed before run
● A quasi-unique identifier for each result could then be derived

– Which is the basis for implementing a cache and avoiding to re-compute results
● Driver added duties : 

– Store outputs (when user activates caching)
– Before launching a script, compute the expressions for all its outputs, and test if they are in cache



  

Referencing ESMValTool results


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5

