-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFE2014.tex
15081 lines (10208 loc) · 699 KB
/
FE2014.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/78444}{Babai}]
Find all functions f:R(+)-R(+) such that f(f(x))=6x-f(x) for all real x.
\flushright \href{https://artofproblemsolving.com/community/c6h336063}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}Find all functions f:R(+)-R(+) such that f(f(x))=6x-f(x) for all real x.\end{tcolorbox}
Let $ a > 0$ and $ b = f(a)$ and let $ x_n$ be the sequence defined as :
$ x_0 = a$, $ x_1 = b$ and $ x_{n + 2} = - x_{n + 1} + 6x_n$ such that we get $ x_{n + 1} = f(x_n)$
Direct resolution of the sequence gives $ x_n = \frac {2a - b}5( - 3)^n + \frac {3a + b}52^n$
If $ 2a - b > 0$ then $ x_{2n + 1} =f(x_{2n}) < 0$ for $ n$ great enough and this is impossible since $ f(x)$ is from $ \mathbb R^ + \to\mathbb R^ +$
If $ 2a - b < 0$ then $ x_{2n}=f(x_{2n-1}) < 0$ for $ n$ great enough and this is impossible since $ f(x)$ is from $ \mathbb R^ + \to\mathbb R^ +$
So $ b = 2a$ and so $ f(x) = 2x$, which indeed is a solution.
Hence the answer : $ \boxed{f(x) = 2x}$ $ \forall x$
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/206331}{TripteshBiswas}]
Ignore, Wrong proof.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
Yes, there is something quite wrong in your solution : "Let f(x)=mx+n" ... You can't make such an assumtion without any reason !
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/206331}{TripteshBiswas}]
A lot of thanks to PCO i thought that $f$ is injective and so $f(x)$ must be in the form $mx+n.$
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/206331}{TripteshBiswas}]
PCO can u please help me to solve the problem. I solved the problem similar method above.
Find all continuous function f satisfying $3f(2x+1)=f(x)+5x$
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}PCO can u please help me to solve the problem. I solved the problem similar method above.
Find all continuous function f satisfying 3f(2x+1)=f(x)+5x\end{tcolorbox}
Let $f(x)=g(x+1)+x-\frac 32$ and equation becomes $3g(2(x+1))=g(x+1)$ and so $3g(2x)=g(x)$
Continuity implies then $g(x)=0$ $\forall x$ and so $\boxed{f(x)=x-\frac 32}$
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/206331}{TripteshBiswas}]
Sorry I can not $LATEXIFIED$ it. (as it needs calculus)
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
I'm sorry but your post is quite impossible to read and understand.
I suggest you to read some simple tutorial on $\LaTeX$ and \/ or to click on formulas of existing posts and then to repost something understandable.
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/83662}{ilikemaths}]
Let's start a marathon on functional equations:
When you solve a problem, you should post a new one.
Here's problem 1:
Find all functions $f: \mathbb{Q}_{>0} \rightarrow \mathbb{Q}_{>0}$ that satisfy:
$f(x+1)=f(x)+1$ $\forall x \in \mathbb{Q}_{>0}$ and
$f(x^2) = f(x)^2$ $\forall x \in \mathbb{Q}_{>0}$.
[color=#FF0000][moderator edit: stickied in Pre-Olympiad forum.][\/color]
\flushright \href{https://artofproblemsolving.com/community/c6h350187}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/61082}{Pain rinnegan}]
\begin{tcolorbox}Let's start a marathon on functional equations:
When you solve a problem, you should post a new one.
\begin{bolded}Problem 1:\end{bolded} Find all functions $f: \mathbb{Q}_{+} \rightarrow \mathbb{Q}_{+}$ that satisfy:
(1).$f(x+1)=f(x)+1$ $\ ,\ \forall x \in \mathbb{Q}_{+}$ and
(2).$f(x^2) = f(x)^2$ $\ ,\ \forall x \in \mathbb{Q}_{+}$.\end{tcolorbox}
I like this idea :)
[hide="Problem 1"]From (1), we can easily find by induction that $f(x+n)=f(x)+n\ ,\ (\forall)x\in \mathbb{Q}_+\ ,\ (\forall)n\in \mathbb{N}$. Therefore by (2) we have:
\[f((x+n)^2)=f^2(x+n)\Leftrightarrow f(x^2+2nx+n^2)=(f(x)+n)^2\Leftrightarrow\]
\[ f(x^2+2nx)+n^2=f^2(x)+2nf(x)+n^2\Leftrightarrow f(x^2+2nx)=f^2(x)+2nf(x)\]
Now let's put $x=\displaystyle\frac{p}{q}\ ,\ p,q\in \mathbb{N}^*$ and let $n\rightarrow q$
\[\Rightarrow f\left(\frac{p^2}{q^2}+2p\right)=f^2\left(\frac{p}{q}\right)+2qf\left(\frac{p}{q}\right)\Leftrightarrow \]
\[f\left(\frac{p^2}{q^2}\right)+2p=f\left(\frac{p^2}{q^2}\right)+2qf\left(\frac{p}{q}\right)\]
So $f\left(\displaystyle\frac{p}{q}\right)=\displaystyle\frac{p}{q}$. So $f(x)=x\ ,\ (\forall)x\in \mathbb{Q}_+$ which verifies the initial equation.[\/hide]
\begin{bolded}Problem 2:\end{bolded} Determine all the functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that:
\[f(x^3)-f(y^3)=(x^2+xy+y^2)(f(x)-f(y))\ ,\ (\forall)x,y\in \mathbb{R}\]
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/64868}{mahanmath}]
\begin{tcolorbox}\begin{bolded}Problem 2:\end{bolded} Determine all the functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that:
\[f(x^3)-f(y^3)=(x^2+xy+y^2)(f(x)-f(y))\ ,\ (\forall)x,y\in \mathbb{R}\]\end{tcolorbox}
[hide="Problem 2"]WLOG assume $f(0)=0$ (otherwise let $F(x)= f(x)-f(0)$ then you can easily see that it works in equation!) .
Now put $y=0$ , we get $f(x^3) =(x^2)f(x)$ . Substitute in the main equation we get $f(x)=xf(1)$.
So the answer is $f(x)=xf(1) + f(0)$[\/hide]
\begin{bolded}Problem 3\end{bolded} : Find all the continuous functions $ f :\mathbb{R}\mapsto\mathbb{R} $ such that $ \forall x,y\in\mathbb{R} $ :
$ (1+f(x)f(y))f(x+y)=f(x)+f(y) $
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/61082}{Pain rinnegan}]
\begin{tcolorbox}
\begin{bolded}Problem 3\end{bolded} : Find all the continuous functions $ f :\mathbb{R}\mapsto\mathbb{R} $ such that $ \forall x,y\in\mathbb{R} $ :
$ (1+f(x)f(y))f(x+y)=f(x)+f(y) $\end{tcolorbox}
It's a too recent question: http://www.artofproblemsolving.com/Forum/viewtopic.php?f=36&t=350104&start=0&hilit=continuous .
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/83662}{ilikemaths}]
Then pose a new problem.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/61082}{Pain rinnegan}]
\begin{bolded}Problem 4:\end{bolded} Determine all the functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that:
\[f(x^3+y^3)=xf(x^2)+yf(y^2)\ ,\ (\forall)x,y\in \mathbb{R}\]
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/83662}{ilikemaths}]
$x=y=0$ yields $f(0)=0$.
$x=0$ yields $f(y^3)=yf(y^2)$, so the given functional equation reduces to:
$f(x^3+y^3)=f(x^3)+f(y^3)$.
Setting $a=x^3$, $b=y^3$ gives:
$f(a+b)=f(a)+f(b)$, which is a Cauchy-equation with solutions:
$f(x)=0$ and $f(x)=cx$ for some $c \in \mathbb{R}$.
So we have two possible functions:
$f(x)=0$ and $f(x)=cx$ for some $c \in \mathbb{R}$ and a quick check tells us that both functions satisfy.
New problem:
find all functions $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ satisfying:
$f(x+y)-f(y) = \frac{x}{y(x+y)}$
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/64868}{mahanmath}]
[hide="Problem 5"]Same as problem 2 ! WLOG assume $f(1) = -1$ , We claim that $f(x)= \frac{-1}{x}$ .To see this fact just put $y=1$ . Hence the answer is $f(x) = \frac{-1}{x} + c$ for some real $c$.[\/hide]
\begin{bolded}Problem 6\end{bolded}.Determine all the functions $ f:\mathbb{R}\rightarrow\mathbb{R} $ such that:
[img]http://latex.codecogs.com\/gif.latex?f%5Cbig%28x+yf%28x%29%5Cbig%29+f%5Cbig%28xf%28y%29-y%5Cbig%29=f%28x%29-f%28y%29+2xy[\/img]
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/64868}{mahanmath}]
\begin{tcolorbox}
$f(a+b)=f(a)+f(b)$, which is a Cauchy-equation with solutions:
$f(x)=0$ and $f(x)=cx$ for some $c \in \mathbb{R}$.
So we have two possible functions:
$f(x)=0$ and $f(x)=cx$ for some $c \in \mathbb{R}$ and a quick check tells us that both functions satisfy.
$\end{tcolorbox}
I`m not sure but I think Cauchy-equation just solve continuous functions. Am I right ?
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/67223}{Amir Hossein}]
\begin{tcolorbox}WLOG assume $f(1) = -1$\end{tcolorbox}
Can we do this ?
How Without Loss Of Generality ?
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/52090}{Dumel}]
\begin{tcolorbox}
\begin{bolded}Problem 6\end{bolded}.Determine all the functions $ f:\mathbb{R}\rightarrow\mathbb{R} $ such that:
[img]http://latex.codecogs.com\/gif.latex?f%5Cbig%28x+yf%28x%29%5Cbig%29+f%5Cbig%28xf%28y%29-y%5Cbig%29=f%28x%29-f%28y%29+2xy[\/img]\end{tcolorbox}[hide="solution"]$P(0,0)$ gives $f(0)=0$. now $P(0,x) \to \ f(-x)=-f(x)$
Finally adding $P(x,y)$ and $P(-y,x)$ we get $f(x)=0$[\/hide]
Post a bit harder problems, please! :-)
\begin{bolded}Problem 7\end{bolded}
Find the least possible value of $f(1998)$ where $f: \mathbb{N} \to \mathbb{N} $ satisfies
$f(n^2f(m)) = m(f(n))^2$
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/83662}{ilikemaths}]
Dumel, your solution isn't correct:
$f(x)=x$ also satisfies!
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/61082}{Pain rinnegan}]
\begin{tcolorbox} we get $f(x)=0$\end{tcolorbox}
$f(x)=0$ is not a solution . :|
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/52090}{Dumel}]
oh what a terrible mistake :blush:
At this moment I don't know how to solve this problem.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/64868}{mahanmath}]
\begin{tcolorbox}[quote="mahanmath"]WLOG assume $f(1) = -1$\end{tcolorbox}
Can we do this ?
How Without Loss Of Generality ?\end{tcolorbox}
As I said ~~ SAME AS PROBLEM \begin{bolded}2\end{bolded} ~~
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/335829}{vjdjmathaddict}]
\begin{tcolorbox}[quote="shmm"]Yes , it was Olympiad problem\end{tcolorbox}
Dont hesitate to post here the official general form for the infinitely many solutions when you'll get it :)\end{tcolorbox}
Let's consider the functions
$ p_n(x) = (\sin x + \cos x)^n - \sin^n x - \cos^n x$.
Now, $ f(x) = \sum a_k x^k$ is a solution iff $ \sum a_k p_k(x) = 0$.
Lemma: Every symmetric polynomial $ P(a, b)$ can be written as a polynomial in $ ab, a + b$.
Now, since $ p_n(x)$ is a symmetric polynomial in $ \sin x, \cos x$ and since $ \sin x \cos x = \frac {(\sin x + \cos x)^2 - 1}{2}$, it follows that $ p_n(x)$ is a polynomial of degree $ n$ in $ u = \sin x + \cos x$ (except when $ n = 1$, in which case $ p_1(x) = 0$.)
Note that $ u$ takes on every value in $ [ - \sqrt {2}, \sqrt {2} ]$. It follows that if $ \sum_{k = 1}^{n} a_k p_k(x) = 0$ then the corresponding polynomial in $ u$ must be identically zero, but since $ p_n(x)$ is the only term of degree $ n$ this is not possible unless $ n = 1$.
Hence the only solution is $ f(x) = \boxed{ax}$.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
Quite wrong.
For example, any additive non linear function is trivially a solution.
You seemed in your answer to consider that "function" means "polynomial" ...
... which unfortunately is wrong.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/335829}{vjdjmathaddict}]
I am very sorry mr pco I have indeed assumed f to be a polynomial.I didn't read that question properly and as far as that goes this was the problem which he meant to give in olympiad.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/328399}{mqcase1004}]
Hello everyone, I'm new. ^^ I hope everyone will help me.
Problem 439: Find all functions $f:(0,\infty )\rightarrow (0,\infty )$ such that $f(x+1)=f(\frac{x+2}{x+3}),\forall x>0 $
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}Hello everyone, I'm new. ^^ I hope everyone will help me.
Problem 439: Find all functions $f:(0,\infty )\rightarrow (0,\infty )$ such that $f(x+1)=f(\frac{x+2}{x+3}),\forall x>0 $\end{tcolorbox}
General solution :
Let $g(x)$ any function from $(0,1]\to (0,+\infty)$
Just define $f(x)$ as :
$\forall x\le 1$ : $f(x)=g(x)$
$\forall x>1$ : $f(x)=g(\frac{x+1}{x+2})$
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/328399}{mqcase1004}]
Can you solve it in detail? Thanks :v
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}Can you solve it in detail? Thanks :v\end{tcolorbox}
What detail more do you want ?
This is just your definition : knowledge of $f(x)$ over $(0,1]$ gives full knowledge over $\mathbb R^+$
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/328399}{mqcase1004}]
If the problem is changed into "Find the constant function", what will the solution be? Thanks.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}If the problem is changed into "Find the constant function", what will the solution be? Thanks.\end{tcolorbox}
I dont understand : trivially any positive constant function is a solution to this problem.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/328399}{mqcase1004}]
\begin{tcolorbox}[quote=mqcase1004]If the problem is changed into "Find the constant function", what will the solution be? Thanks.\end{tcolorbox}
I dont understand : trivially any positive constant function is a solution to this problem.\end{tcolorbox}
Oh Sorry for my English. I'm mean the continuous function not the constant one. So sorry
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox} I'm mean the continuous function not the constant one. So sorry\end{tcolorbox}
Just add to my previous solution the two constraints :
1) $g(x)$ is continuous over $(0,1]$ (in order to have continuity of $f(x)$ over $(0,1)$ and $(1,+\infty)$
2) $g(1)=g(\frac 23)$ in order to have continuity of $f(x)$ at $1$)
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/248946}{techguy2}]
Is there an ongoing problem currently?
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/328608}{Thinking666}]
@pco If I am not mistaken you are wrong on the solution of problem $257$. In the second part you say that $f(1) = 2$ and $f(2) = 1$ works but this is wrong because then $f(f(1)) + f(2) = 2 \ne 3$.
Here is a new problem :
Let $f:\mathbf{R} \rightarrow \mathbf{R}$. Find all functions $f$ such that
$$f(f(x)+2y) = 10x + f(f(y)-3x)$$
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/345905}{TLP.39}]
\begin{tcolorbox}
Here is a new problem :
Let $f:\mathbf{R} \rightarrow \mathbf{R}$. Find all functions $f$ such that
$$f(f(x)+2y) = 10x + f(f(y)-3x)$$\end{tcolorbox}
Mmmmm........
[hide=solution]Let $P(x,y)$ be the assertion.
Clearly,$f(x)+2y=f(y)-3x\implies x=0--------------------(1)$
Now,$P\left(x,\frac{a-f(x)}{2}\right)\implies f(a)-10x=f\left(f\left(\frac{a-f(x)}{2}\right)-3x\right)$ which implies that $f(x)$ is surjective.
Let call the above equation $Q(a,x)$
If $f(a)=f(b)\exists a\ne b$
Then $Q(2a+f(x),x),Q(2b+f(x),x)\implies f(2a+f(x))=f(2b+f(x))$,but since $f(x)$ is surjective,this implies that $f(x)$ is periodic.
Let $f(x)=f(x+c)\forall x$ for some constant $c\ne 0$
Then $(1),f\left(\frac{2c}{5}\right)+2\left(-\frac{3c}{5}\right)=f\left(-\frac{3c}{5}\right)-3\left(\frac{2c}{5}\right)\implies \frac{2c}{5}=0\implies c=0$,contradiction.Hence $f(x)$ is bijective.
Finally,$P(0,x)\implies f(0)+2x=f(x)\implies\boxed{f(x)=2x+c}\text{ for some constant } c$ which clearly satisfied the equation.[\/hide]
I don't have problem,so just review the old unsolved one :) .
\begin{tcolorbox}[quote=Amir Hossein]I'm posting next problem.
\begin{bolded}Problem 43\end{bolded} :
Let $ f$ be a real function defined on the positive half-axis for which $ f(xy)=xf(y)+yf(x)$ and $ f(x+1) \leq f(x)$ hold for every positive $ x$ and $ y$. Show that if $ f(1\/2)=1\/2$, then \[ f(x)+f(1-x) \geq -x \log_2 x -(1-x) \log_2 (1-x)\] for every $ x\in (0,1)$.\end{tcolorbox}
the problem not solved\end{tcolorbox}
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/285709}{don2001}]
Any solution?
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/10045}{socrates}]
:)
3. $\forall x, y \in \mathbb{R} \ , \ \ f(x+xf(y))=f(x)+xf(y)$
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=36&t=461479&
\flushright \href{https://artofproblemsolving.com/community/c6h477809}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/122611}{oty}]
Edit: I had wrong :P
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/106080}{a123}]
\begin{tcolorbox}$P(1,x)$ imply : $f(1+f(x))=f(x)+xf(1)$(1), .\end{tcolorbox}
Not true.It will be
$f(1+f(x))=f(1)+f(x)$
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/122611}{oty}]
\begin{tcolorbox}[quote="oty"]$P(1,x)$ imply : $f(1+f(x))=f(x)+xf(1)$(1), .\end{tcolorbox}
Not true.It will be
$f(1+f(x))=f(1)+f(x)$\end{tcolorbox}
yes you are right , thank you .
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/10045}{socrates}]
Any solution for this problem? If you have a solution assuming continuity, monotonicity etc don't hesitate to post it! :)
Can we also solve the similar problem?
$ \forall x, y \in \mathbb{R}^+ \ , \ \ f(x+xf(y))=f(x)+xf(y)$
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}3. $\forall x, y \in \mathbb{R} \ , \ \ f(x+xf(y))=f(x)+xf(y)$\end{tcolorbox}
\begin{tcolorbox}Any solution for this problem? If you have a solution assuming continuity, monotonicity etc don't hesitate to post it! :) \end{tcolorbox}
With continuity constraint, it's quite easy to establish $f(x)=0$ $\forall x$ or $f(x)=x+a$ $\forall x$
But since this is a real olympiad exercise you got in a real exam (isn't it ?) and since this real exercise did not contain continuity constraint, there is surely an olympiad level solution not demanding continuity.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/10045}{socrates}]
In fact, I took the problem from http://www.artofproblemsolving.com/Forum/viewtopic.php?f=36&t=461479&
I haven't seen the problem anywhere else... I asked for a solution using continuity, monotonicity just in case there were missing...
So, could you please post your solution assuming continuity? :)
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}3. $\forall x, y \in \mathbb{R} \ , \ \ f(x+xf(y))=f(x)+xf(y)$
[color=#FF0000]assuming continuity[\/color]
\end{tcolorbox}
Let $g(x)=f(x)+1-x$ so that equation becomes $g(x(g(y)+y))=g(x)$
If $g(y)+y=1$ $\forall y$, we get $\boxed{f(x)=0}$ $\forall x$ which indeed is a solution
If $g(y)+y=0$ $\forall y$, we get $f(x)=-1$ $\forall x$ which is not a solution
If $g(y)+y=-1$ $\forall y$, we get $f(x)=-2$ $\forall x$ which is not a solution
Else, continuity implies $\exists u,v$ such that $g(u)+u=v\notin\{-1,0,1\}$
Then we get $g(vx)=g(x)$ and so $g(v^nx)=g(x)$ $\forall x,\forall n\in\mathbb Z$
Setting then $n\to+\infty$ or $n\to-\infty$ and using again continuity, we get $g(x)=g(0)$ and so $\boxed{f(x)=x+a}$ $\forall x$, which indeed is a solution, whatever is $a\in\mathbb R$
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/109704}{dien9c}]
Find continuous function $f:\mathbb{R} \to \mathbb{R}$ such that
\[a f(f(x)) = b f(x) + cx\]
\flushright \href{https://artofproblemsolving.com/community/c6h485367}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}Find continuous function $f:\mathbb{R} \to \mathbb{R}$ such that
\[a f(f(x)) = b f(x) + cx\]\end{tcolorbox}
Is this the exact exercice you got in your olympiad contest or training session ? (it's a little bit different that the one you asked me in pm).
Without any restriction on $a,b,c$ this implies huge discussion depending on values of $a,b,c$ and some strange solutions.
For, exemple, with $(a,b,c)=(1,1,0)$ we get a continuous solution $f(x)=sign(x)\min(|x|,\sin\frac{\pi |x|}2)$ and infinitely many other functions ...
So I'm surprised that such a general problem occured in a real olympiad contest or training session.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/109704}{dien9c}]
\begin{tcolorbox}[quote="dien9c"]Find continuous function $f:\mathbb{R} \to \mathbb{R}$ such that
\[a f(f(x)) = b f(x) + cx\]\end{tcolorbox}
Is this the exact exercice you got in your olympiad contest or training session ? (it's a little bit different that the one you asked me in pm).
Without any restriction on $a,b,c$ this implies huge discussion depending on values of $a,b,c$ and some strange solutions.
For, exemple, with $(a,b,c)=(1,1,0)$ we get a continuous solution $f(x)=sign(x)\min(|x|,\sin\frac{\pi |x|}2)$ and infinitely many other functions ...
So I'm surprised that such a general problem occured in a real olympiad contest or training session.\end{tcolorbox}
I saw the two private function
1. \[f(f(x))=f(x)+x\] (math contest)
2. \[f(f(x))=f(x)+2x\] (Belarusia 1998)
and I asked the general above
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}Find continuous function $f:\mathbb{R} \to \mathbb{R}$ such that
\[a f(f(x)) = b f(x) + cx\]\end{tcolorbox}
Here is a rather quick answer to your general question.
(I hope that if you encounter a problem "solve in $\mathbb Z$ equation $x+17=3$" and another problem "solve in $\mathbb R$ equation $x^2+2x+1=0$", you will not ask in the forum, claiming that it is a real olympiad exercise : "solve in $\mathbb C$ equation $\sum_{k=0}^na_kx^k$ where $a_i\in\mathbb C$" just in order to get a general solution to all your polynomial equation exercises :( )
\begin{bolded}Some personal comments\end{underlined}\end{bolded} :
I did not check all the typos (too tiring) and I hope you'll excuse them
I dont claim that all my proofs are the shortest.
Maybe some subcases could have been merged.
Subcase 7.2 is not finished. It seems to me that it is one of the most complex and it has infinitely many solutions.
Your two examples in previous posts both are in subcase 7.1.1
Some subcases was full independant questions in this forum (for example $f(f(x))=x$ is subcase 5.3 and $f(x)+f^{-1}(x)=2x$ is subcase 7.3.2)
I hope you'll read this post line per line.
\begin{bolded}Case 1\end{underlined}\end{bolded} : If $a=b=c=0$ : any continuous function is solution
\begin{bolded}Case 2\end{underlined}\end{bolded} : If $a=b=0$ and $c\ne 0$ : no solution
\begin{bolded}Case 3\end{underlined} \end{bolded}: If $a=0$ and $b\ne 0$ : unique solution is $f(x)=-\frac cbx$ $\forall x$
\begin{bolded}Case 4\end{underlined}\end{bolded} : If $a\ne 0$ and $b=c=0$, equation is $f(f(x))=0$ and so $f(x)=0$ $\forall x\in f(\mathbb R)$ and, since continuous, $f(\mathbb R)$ is an interval and so :
\begin{bolded}Subcase 4.1\end{bolded} : $f(\mathbb R)=\mathbb R$ and the unique solution $f(x)=0$ $\forall x$
\begin{bolded}Subcase 4.2\end{bolded} : $f(\mathbb R)=[a,+\infty)$. with $a\le 0$ (since obviously $0\inf(\mathbb R)$
Then we get infinitely many solutions :
Let $a\le 0$
Let $h(x)$ any continuous surjection from $(-\infty,a]to[a,+\infty)$ such that $h(a)=0$
Then $f(x)=h(x)$ $\forall x<a$ and $f(x)=0$ $\forall x\ge a$
\begin{bolded}Subcase 4.3\end{bolded} : $f(\mathbb R)=(a,+\infty)$. with $a< 0$ (since obviously $0\inf(\mathbb R)$
Then we get infinitely many solutions :
Let $a<0$
Let $h(x)$ any continuous surjection from $(-\infty,a]to(a,+\infty)$ such that $h(a)=0$
Then $f(x)=h(x)$ $\forall x<a$ and $f(x)=0$ $\forall x\ge a$
\begin{bolded}Subcase 4.4 \end{bolded}: $f(\mathbb R)=(-\infty,a]$. with $a\ge 0$ (since obviously $0\inf(\mathbb R)$
Then we get infinitely many solutions :
Let $a\ge 0$
Let $h(x)$ any continuous surjection from $[a,+\infty)to(-\infty,a]$ such that $h(a)=0$
Then $f(x)=h(x)$ $\forall x>a$ and $f(x)=0$ $\forall x\le a$
\begin{bolded}Subcase 4.5\end{bolded} : $f(\mathbb R)=(-\infty,a)$. with $a>0$ (since obviously $0\inf(\mathbb R)$
Then we get infinitely many solutions :
Let $a>0$
Let $h(x)$ any continuous surjection from $[a,+\infty)to(-\infty,a)$ such that $h(a)=0$
Then $f(x)=h(x)$ $\forall x>a$ and $f(x)=0$ $\forall x\le a$
\begin{bolded}Subcase 4.6\end{bolded} : $f(\mathbb R)=[a,b]$ with $a\le 0\le b$ (since obviously $0\inf(\mathbb R)$
Then we get infinitely many solutions :
Let $a\le 0\le b$
Let $h(x)$ any continuous function from $\mathbb R\to\mathbb R$ such that $h(\mathbb R\setminus(a,b))=[a,b]$ and $h(a)=h(b)=0$.
Then $f(x)=h(x)$ $\forall x\notin[a,b]$ and $f(x)=0$ $\forall x\in[a,b]$
\begin{bolded}Subcase 4.7\end{bolded} : $f(\mathbb R)=[a,b)$ with $a\le 0< b$ (since obviously $0\inf(\mathbb R)$
Then we get infinitely many solutions :
Let $a\le 0< b$
Let $h(x)$ any continuous function from $\mathbb R\to\mathbb R$ such that $hf(\mathbb R\setminus(a,b))=[a,b)$ and $h(a)=h(b)=0$.
Then $f(x)=h(x)$ $\forall x\notin[a,b]$ and $f(x)=0$ $\forall x\in[a,b]$
\begin{bolded}Subcase 4.8\end{bolded} : $f(\mathbb R)=(a,b]$ with $a< 0\le b$ (since obviously $0\inf(\mathbb R)$
Then we get infinitely many solutions :
Let $a< 0\le b$
Let $h(x)$ any continuous function from $\mathbb R\to\mathbb R$ such that $h(\mathbb R\setminus(a,b))=(a,b]$ and $h(a)=h(b)=0$.
Then $f(x)=h(x)$ $\forall x\notin[a,b]$ and $f(x)=0$ $\forall x\in[a,b]$
\begin{bolded}Subcase 4.9\end{bolded} : $f(\mathbb R)=(a,b)$ with $a< 0\< b$ (since obviously $0\inf(\mathbb R)$
Then we get infinitely many solutions :
Let $a< 0< b$
Let $h(x)$ any continuous function from $\mathbb R\to\mathbb R$ such that $h(\mathbb R\setminus(a,b))=(a,b)$ and $h(a)=h(b)=0$.
Then $f(x)=h(x)$ $\forall x\notin[a,b]$ and $f(x)=0$ $\forall x\in[a,b]$
\begin{bolded}Case 5\end{underlined}\end{bolded} : If $a\ne 0$ and $b=0$ and $c\ne 0$, equation is $f(f(x))=tx$ with $t=\frac ca\ne 0$
So $f(x)$ is bijective and so, since continuous, monotonous.
So $f(f(x))$ is an increasing function.
\begin{bolded}Subcase 5.1\end{bolded} : If $t<0$ ($\iff ac<0$) then no solution since $LHS$ is increasing while RHS is decreasing
\begin{bolded}Subcase 5.2\end{bolded} : if $1>t>0$ ($\iff$ $a>c>0$ or $a<c<0$), this is a classical equation with infinitely many solutions which may be built piece par piece.
5.2.1) increasing solutions\end{underlined} :
$\forall x>0$ :
Let $a\in(t,1)$
Let $h_1(x)$ any continuous increasing bijection from $[a,1]\to[t,a]$
Define $f(x)$ as :
$\forall x\in(a,1]$ : $f(x)=h_1(x)$
$\forall x\in(t,a]$ : $f(x)=th_1^{[-1]}(x)$
$\forall x\in(0,t]\cup(1,+\infty)$ : $f(x)=t^{\lfloor\log_t x\rfloor}f(xt^{-\lfloor\log_t x\rfloor})$
$f(0)=0$
$\forall x<0$
Let $b\in(-1,-t)$
Let $h_2(x)$ any continuous increasing bijection from $[-1,b]\to[b,-t]$
Define $f(x)$ as :
$\forall x\in[-1,b)$ : $f(x)=h_2(x)$
$\forall x\in[b,-t)$ : $f(x)=th_2^{[-1]}(x)$
$\forall x\in(-\infty,-1)\cup[-t,0)$ : $f(x)=t^{\lfloor\log_t -x\rfloor}f(xt^{-\lfloor\log_t -x\rfloor})$
5.2.2) decreasing solutions\end{underlined} :
Let $a<0$
Let $h(x)$ be any continuous decreasing bijection from $[t,1]\to[a,ta]$
$\forall x\ge 0$ : $f(x)=t^{\lfloor\log_t x\rfloor}h(xt^{-\lfloor\log_t x\rfloor})$
$\forall x<0$ : $f(x)=th^{[-1]}(x)$
\begin{bolded}Subcase 5.3\end{bolded} : If $t=1$ ($\iff a=c$), then equation is $f(f(x))=x$ and is very classical :
5.3.1) increasing solutions\end{underlined}
It's well known that equation $f(f(x))=x$ has a unique continuous increasing solution $f(x)=x$ $\forall x$
5.3.2) decreasing solutions\end{underlined}
A general form is :
Let $h(x)$ be any continuous decreasing bijection from $[0,+\infty)\to(-\infty,0]$
$\forall x\ge 0$ : $f(x)=h(x)$
$\forall x<0$ : $f(x)=h^{[-1]}(x)$
\begin{bolded}Subcase 5.4\end{bolded} : if $t>1$ ($\iff$ $c>a>0$ or $c<a<0$), this is a classical equation with infinitely many solutions which may be built piece par piece.
5.4.1) increasing solutions\end{underlined} :
$\forall x>0$ :
Let $a\in(1,t)$
Let $h_1(x)$ any continuous increasing bijection from $[1,a]\to[a,t]$
Define $f(x)$ as :
$\forall x\in[1,a)$ : $f(x)=h_1(x)$
$\forall x\in[a,t)$ : $f(x)=th_1^{[-1]}(x)$
$\forall x\in(0,1)\cup[t,+\infty)$ : $f(x)=t^{\lfloor\log_t x\rfloor}f(xt^{-\lfloor\log_t x\rfloor})$
$f(0)=0$
$\forall x<0$
Let $b\in(-t,-1)$
Let $h_2(x)$ any continuous increasing bijection from $[b,-1]\to[-t,b]$
Define $f(x)$ as :
$\forall x\in(b,-1]$ : $f(x)=h_2(x)$
$\forall x\in(-t,b]$ : $f(x)=th_2^{[-1]}(x)$
$\forall x\in(-\infty,-t]\cup(-1,0)$ : $f(x)=t^{\lfloor\log_t -x\rfloor}f(xt^{-\lfloor\log_t -x\rfloor})$
5.4.2) decreasing solutions\end{underlined} :
Let $a<0$
Let $h(x)$ be any continuous decreasing bijection from $[1,t]\to[ta,a]$
$\forall x\ge 0$ : $f(x)=t^{\lfloor\log_t x\rfloor}h(xt^{-\lfloor\log_t x\rfloor})$
$\forall x<0$ : $f(x)=th^{[-1]}(x)$
\begin{bolded}Case 6\end{underlined}\end{bolded} : If $a\ne 0$ and $b=\ne 0$ and $c=0$, equation is $f(f(x))=tf(x)$ with $t=\frac ba\ne 0$
So $f(x)=tx$ $\forall x\in f(\mathbb R)$
Since continuous, $f(\mathbb R)$ is an interval and so :
\begin{bolded}Subcase 6.1\end{bolded} : if $f(\mathbb R)=\mathbb R$, we get $f(x)=tx$ $\forall x$ which indeed is a solution
\begin{bolded}Subcase 6.2\end{bolded} : if $f(\mathbb R)=[a,+\infty)$
This means $ta\ge a$ (since $f(a)=ta\in f(\mathbb R)$) and the solutions :
\begin{bolded}Subcase 6.2.1\end{bolded} : if $t>1$, then $a\ge 0$ and :
Let $a\ge 0$
Let $h(x)$ be any continuous function from $(-\infty,a]\to[a,+\infty)$ such that $h(a)=ta$ and $[a,ta]\subseteq h((-\infty,a])$ then
$f(x)=h(x)$ $\forall x\le a$
$f(x)=tx$ $\forall x>a$
\begin{bolded}Subcase 6.2.2\end{bolded} : if $t=1$, then no constraint on $a$ and :
Let $a \in\mathbb R$
Let $h(x)$ be any continuous function from $(-\infty,a]\to[a,+\infty)$ such that $h(a)=a$. Then :
$f(x)=h(x)$ $\forall x\le a$
$f(x)=x$ $\forall x>a$
\begin{bolded}Subcase 6.2.3\end{bolded} : if $1>t>0$, then $a\le 0$ and :
Let $a\le 0$
Let $h(x)$ be any continuous function from $(-\infty,a]\to[a,+\infty)$ such that $h(a)=ta$ and $[a,ta]\subseteq h((-\infty,a])$ then
$f(x)=h(x)$ $\forall x\le a$
$f(x)=tx$ $\forall x>a$
\begin{bolded}Subcase 6.2.4\end{bolded} : if $t<0$
Choosing some $f(x)$ positive and great enough, we get that $tf(x)<a$ and so can not be in $f(\mathbb R)$
So no solution
\begin{bolded}Subcase 6.3\end{bolded} : if $f(mathbb R)=(a,+\infty)$
We get $f(x)=tx$ $\forall x>a$ and so (continuity) $f(a)=ta$ and so $ta>a$ and the solutions :
\begin{bolded}Subcase 6.3.1\end{bolded} : if $t>1$, then $a>0$ and :
Let $a>0$
Let $h(x)$ be any continuous function from $(-\infty,a]\to(a,+\infty)$ such that $h(a)=ta$ and $(a,ta]\subseteq h((-\infty,a])$ then
$f(x)=h(x)$ $\forall x\le a$
$f(x)=tx$ $\forall x>a$
\begin{bolded}Subcase 6.3.2\end{bolded} : if $t=1$, then $ta>a$ is impossible and so no solution
\begin{bolded}Subcase 6.3.3\end{bolded} : if $1>t>0$, then $a< 0$ and :
Let $a<0$
Let $h(x)$ be any continuous function from $(-\infty,a]\to(a,+\infty)$ such that $h(a)=ta$ and $(a,ta]\subseteq h((-\infty,a])$ then
$f(x)=h(x)$ $\forall x\le a$
$f(x)=tx$ $\forall x>a$
\begin{bolded}Subcase 6.3.4\end{bolded} : if $t<0$
Choosing some $f(x)$ positive and great enough, we get that $tf(x)\le a$ and so can not be in $f(\mathbb R)$
So no solution
\begin{bolded}Subcase 6.4\end{bolded} : if $f(\mathbb R)=(-\infty,a]$
This means $ta\le a$ (since $f(a)=ta\in f(\mathbb R)$) and the solutions :
\begin{bolded}Subcase 6.4.1\end{bolded}: if $t>1$, then $a\le 0$ and :
Let $a\le 0$
Let $h(x)$ any continuous function from $[a,+\infty)\to(-\infty,a]$ such that $h(a)=ta$ and $[ta,a]\subseteq h([a,+\infty))$. Then :
$f(x)=tx$ $\forall x\le a$
$f(x)=h(x)$ $\forall x>a$
\begin{bolded}Subcase 6.4.2\end{bolded}: if $t=1$, then no constraint on $a$ and :
Let $a\in\mathbb R$
Let $h(x)$ any continuous function from $[a,+\infty)\to(-\infty,a]$ such that $h(a)=a$. Then :
$f(x)=x$ $\forall x\le a$
$f(x)=h(x)$ $\forall x>a$
\begin{bolded}Subcase 6.4.3\end{bolded} : if $1>t>0$, then $a\ge 0$ and :
Let $a\ge 0$
Let $h(x)$ any continuous function from $[a,+\infty)\to(-\infty,a]$ such that $h(a)=ta$ and $[ta,a]\subseteq h([a,+\infty))$. Then :
$f(x)=tx$ $\forall x\le a$
$f(x)=h(x)$ $\forall x>a$
\begin{bolded}Subcase 6.4.4\end{bolded} : if $t<0$
Choosing some $f(x)$ negative and small enough, we get that $tf(x)> a$ and so can not be in $f(\mathbb R)$
So no solution
\begin{bolded}Subcase 6.5\end{bolded} : if $f(\mathbb R)=(-\infty,a)$
We get $f(x)=tx$ $\forall x<a$ and so (continuity) $f(a)=ta$ and so $ta<a$ and the solutions :
\begin{bolded}Subcase 6.5.1\end{bolded}: if $t>1$, then $a< 0$ and :
Let $a<0$
Let $h(x)$ any continuous function from $[a,+\infty)\to(-\infty,a)$ such that $h(a)=ta$ and $[ta,a)\subseteq h([a,+\infty))$. Then :
$f(x)=tx$ $\forall x\le a$
$f(x)=h(x)$ $\forall x>a$
\begin{bolded}Subcase 6.5.2\end{bolded}: if $t=1$, then $ta<a$ is impossible and so no solution
\begin{bolded}Subcase 6.5.3\end{bolded} : if $1>t>0$, then $a>0$ and :
Let $a>0$
Let $h(x)$ any continuous function from $[a,+\infty)\to(-\infty,a)$ such that $h(a)=ta$ and $[ta,a)\subseteq h([a,+\infty))$. Then :
$f(x)=tx$ $\forall x\le a$
$f(x)=h(x)$ $\forall x>a$
\begin{bolded}Subcase 6.5.4\end{bolded} : if $t<0$
Choosing some $f(x)$ negative and small enough, we get that $tf(x)\ge a$ and so can not be in $f(\mathbb R)$
So no solution
\begin{bolded}Subcase 6.6 \end{bolded}: if $f(\mathbb R)=[a,b]$
Then $a\le ta\le b$ and $a\le tb\le b$
\begin{bolded}Subcase 6.6.1\end{bolded} : if $t>1$, then $a\le ta\le b$ and $a\le tb\le b$ imply $a=b=0$ and so $f(x)=0$ $\forall x$, which indeed is a solution
\begin{bolded}Subcase 6.6.2\end{bolded} : if $t=1$, we get the solutions :
Let $a\le b$
Let $h_1(x)$ any continuous function from $(-\infty,a]\to[a,b]$ such that $h_1(a)=a$
Let $h_2(x)$ any continuous function from $[b,+\infty]\to[a,b]$ such that $h_2(b)=b$
Then :
$\forall x<a$ : $f(x)=h_1(x)$
$\forall x\in[a,b]$ : $f(x)=x$
$\forall x>b$ : $f(x)=h_2(x)$
\begin{bolded}Subcase 6.6.3\end{bolded} : if $1>t>0$, then $a\le ta\le b$ and $a\le tb\le b$ imply $a\le 0\le b$ and :
Let $a\le 0\le b$
Let $h(x)$ be any continuous function from $\mathbb R\to[a,b]$ such that :
$h(a)=ta$
$h(b)=tb$
$[a,ta]\cup[tb,b]\subseteq h((-\infty,a]\cup[b,+\infty))$
Then :
$\forall x\in[a,b]$ : $f(x)=tx$
$\forall x\notin[a,b]$ : $f(x)=h(x)$
\begin{bolded}Subcase 6.6.4\end{bolded} : if $-1\le t<0$, then $a\le ta\le b$ and $a\le tb\le b$ imply $a\le 0$ and $\frac at\ge b\ge ta$ and :
Let $a\le 0$ and $b\in[ta,\frac at]$
Let $h(x)$ be any continuous function from $\mathbb R\to[a,b]$ such that :
$h(a)=ta$
$h(b)=tb$
$[a,tb]\cup[ta,b]\subseteq h((-\infty,a]\cup[b,+\infty))$
Then :
$\forall x\in[a,b]$ : $f(x)=tx$
$\forall x\notin[a,b]$ : $f(x)=h(x)$
\begin{bolded}Subcase 6.6.5 \end{bolded}: if $t<-1$, then $a\le ta\le b$ and $a\le tb\le b$ imply $a=b=0$ and the solution $f(x)=0$ $\forall x$ which indeed is a solution.
\begin{bolded}Subcase 6.7\end{bolded} : if $f(\mathbb R)=[a,b)$
Then $f(x)=tx$ $\forall x\in [a,b)$ and so $tx\in[a,b)$ $\forall x\in[a,b)$
And so continuity implies $a\le ta< b$ and $a\le tb< b$
\begin{bolded}Subcase 6.7.1\end{bolded} : if $t\ge 1$, then $a\le ta< b$ and $a\le tb< b$ imply no solution
\begin{bolded}Subcase 6.7.2\end{bolded} : if $1>t>0$, then $a\le ta< b$ and $a\le tb< b$ imply $a\le 0< b$ and :
Let $a\le 0< b$
Let $h(x)$ be any continuous function from $\mathbb R\to[a,b)$ such that :
$h(a)=ta$
$h(b)=tb$
$[a,ta]\cup[tb,b)\subseteq h((-\infty,a]\cup[b,+\infty))$
Then :
$\forall x\in[a,b]$ : $f(x)=tx$
$\forall x\notin[a,b]$ : $f(x)=h(x)$
\begin{bolded}Subcase 6.7.3\end{bolded} : if $-1< t<0$, then $a\le ta< b$ and $a\le tb< b$ imply $a<0$ and $\frac at\ge b> ta$ and :
Let $a<0$ and $b\in(ta,\frac at]$
Let $h(x)$ be any continuous function from $\mathbb R\to[a,b)$ such that :
$h(a)=ta$
$h(b)=tb$
$[a,tb]\cup[ta,b)\subseteq h((-\infty,a]\cup[b,+\infty))$
Then :
$\forall x\in[a,b]$ : $f(x)=tx$
$\forall x\notin[a,b]$ : $f(x)=h(x)$
\begin{bolded}Subcase 6.7.4\end{bolded} : if $t\le -1$, then $a\le ta< b$ and $a\le tb< b$ imply no solution
\begin{bolded}Subcase 6.8\end{bolded} : if $f(\mathbb R)=(a,b]$
Then $f(x)=tx$ $\forall x\in (a,b]$ and so $tx\in(a,b]$ $\forall x\in(a,b]$
And so continuity implies $a< ta\le b$ and $a< tb\le b$
\begin{bolded}Subcase 6.8.1\end{bolded} : if $t\ge 1$, then $a< ta\le b$ and $a< tb\le b$ imply no solution
\begin{bolded}Subcase 6.8.2\end{bolded} : if $1>t>0$, then $a< ta\le b$ and $a< tb\le b$ imply $a<0\le b$ and :
Let $a< 0\le b$
Let $h(x)$ be any continuous function from $\mathbb R\to[a,b]$ such that :
$h(a)=ta$
$h(b)=tb$
$(a,ta]\cup[tb,b]\subseteq h((-\infty,a]\cup[b,+\infty))$
Then :
$\forall x\in[a,b]$ : $f(x)=tx$
$\forall x\notin[a,b]$ : $f(x)=h(x)$
\begin{bolded}Subcase 6.8.3\end{bolded} : if $-1<t<0$, then $a< ta\le b$ and $a< tb\le b$ imply $a< 0$ and $\frac at> b\ge ta$ and :
Let $a< 0$ and $b\in[ta,\frac at)$
Let $h(x)$ be any continuous function from $\mathbb R\to(a,b]$ such that :
$h(a)=ta$
$h(b)=tb$
$(a,tb]\cup[ta,b]\subseteq h((-\infty,a]\cup[b,+\infty))$
Then :
$\forall x\in[a,b]$ : $f(x)=tx$
$\forall x\notin[a,b]$ : $f(x)=h(x)$
\begin{bolded}Subcase 6.8.4\end{bolded} : if $t\le -1$, then $a< ta\le b$ and $a< tb\le b$ imply no solution
\begin{bolded}Subcase 6.9\end{bolded} : if $f(\mathbb R)=(a,b)$
Then $f(x)=tx$ $\forall x\in (a,b)$ and so $tx\in(a,b)$ $\forall x\in(a,b)$
And so continuity implies $a< ta< b$ and $a< tb< b$
\begin{bolded}Subcase 6.9.1\end{bolded} : if $t\ge 1$, then $a< ta<b$ and $a< tb< b$ imply no solution
\begin{bolded}Subcase 6.9.2\end{bolded} : if $1>t>0$, then $a< ta<b$ and $a< tb< b$ imply $a< 0< b$ and :
Let $a< 0< b$
Let $h(x)$ be any continuous function from $\mathbb R\to(a,b)$ such that :
$h(a)=ta$
$h(b)=tb$
$(a,ta]\cup[tb,b)\subseteq h((-\infty,a]\cup[b,+\infty))$
Then :
$\forall x\in[a,b]$ : $f(x)=tx$
$\forall x\notin[a,b]$ : $f(x)=h(x)$
\begin{bolded}Subcase 6.9.3\end{bolded} : if $-1< t<0$, then $a< ta<b$ and $a< tb< b$ imply $a< 0$ and $\frac at> b> ta$ and :
Let $a<0$ and $b\in(ta,\frac at)$
Let $h(x)$ be any continuous function from $\mathbb R\to(a,b)$ such that :
$h(a)=ta$
$h(b)=tb$
$(a,tb]\cup[ta,b)\subseteq h((-\infty,a]\cup[b,+\infty))$
Then :
$\forall x\in[a,b]$ : $f(x)=tx$
$\forall x\notin[a,b]$ : $f(x)=h(x)$
\begin{bolded}Subcase 6.9.4\end{bolded} : if $t\le -1$, then $a< ta<b$ and $a< tb< b$ imply no solution
\begin{bolded}Case 7\end{underlined}\end{bolded} : $a,b,c\ne 0$ and the equation is $f(f(x))=uf(x)+vx$ with $u,v\ne 0$
$f(x)$ is injective and so, since continuous, monotonous.
If $\lim_{x\to+\infty}f(x)=L$, then setting $x\to+\infty$ in functional equation and using continuity gives contradiction
So $\lim_{x\to+\infty}f(x)=\pm\infty$
If $\lim_{x\to-\infty}f(x)=L$, then setting $x\to-\infty$ in functional equation and using continuity gives contradiction
So $\lim_{x\to-\infty}f(x)=\pm\infty$
And since $f(x)$ is monotonous, we get that $f(\mathbb R)=\mathbb R$ and so $f(x)$ is a bijection.
\begin{bolded}Subcase 7.1\end{bolded} : $v>0$
let $x\in\mathbb R$ and the sequence $a_n$ defined as :
$a_0=x$
$a_1=f(x)$
$a_{n+2}=ua_{n+1}+va_n$ $\forall n\ge 0$
Notice than $a_n=f^{[n]}(x)$
Since $v>0$, the characteristic equation $x^2-ux-v$ has two distinct real roots $r_1>0>r_2$
And so $f^{[n]}(x)=\frac{(f(x)-r_2x)r_1^n-(f(x)-r_1x)r_2^n}{r_1-r_2}$
Since $f(x)$ is a bijection, then $f^{-1}(x)$ exists and it is easy to show that the above expression is true $\forall n\in\mathbb Z$
\begin{bolded}Subcase 7.1.1\end{bolded} : $u+v\ne 1$
$u+v\ne 1$ $\implies$ $r_1\ne 1$
$u\ne 0$ $\implies$ $r_2\ne -r_1$
If the equation $f(x)=x$ has real root $r$, then functional equation implies $r=ur+vr$ and so $r=0$
So, if $x\ne 0$, $f^{k+1}(x)\ne f^k(x)$ $\forall k$
For $x\ne 0$, we can then define $\Delta_n(x)=\frac{f^{n+2}(x)-f^{n+1}(x)}{f^{n+1}(x)-f^{n}(x)}$
$\Delta_n(x)\ne 0$
Since $f(x)$ is monotonous, $\Delta_n(x)$ has a constant sign, for any values of $n\in\mathbb Z$ and $x\in\mathbb R^*$
$\Delta_n(x)=$ $\frac{(f(x)-r_2x)(r_1-1)r_1^{n+1}-(f(x)-r_1x)(r_2-1)r_2^{n+1}}{(f(x)-r_2x)(r_1-1)r_1^{n}-(f(x)-r_1x)(r_2-1)r_2^{n}}$
Let $x\ne 0$ such that $f(x)\ne r_1x$ and $f(x)\ne r_2x$
We know that $|r_1|\ne |r_2|$ and so :
If $|r_1|>|r_2|$ : $\lim_{n\to +\infty}\Delta_n(x)=r_1$ and $\lim_{n\to -\infty}\Delta_n(x)=r_2$
If $|r_1|<|r_2|$ : $\lim_{n\to +\infty}\Delta_n(x)=r_2$ and $\lim_{n\to -\infty}\Delta_n(x)=r_1$
In both cases $\Delta_n(x)$ does not have a constant sign.
So $\forall x\ne 0$, either $f(x)=r_1x$, either $f(x)=r_2x$ and continuity + monotonicity imply :
either $f(x)=r_1x$ $\forall x$ which indeed is a solution
either $f(x)=r_2x$ $\forall x$ which indeed is a solution
Hence two solutons in this subcase
\begin{bolded}Subcase 7.1.2\end{bolded} : $u+v=1$
So $r_1=1$ and $r_2=u-1=-v<0$
$f(x)=x$ is a solution.
Let us from now in this subcase look for other solutions (different from $f(x)=x$ $\forall x$)
Let then $x$ such that $f(x)\ne x$ : $\frac{f(f(x))-f(x)}{f(x)-x}=-v<0$ and so $f(x)$ must be decreasing.
Since $f(x)$ is continuous and decreasing, then equation $f(x)=x$ has a unique root $r$.
Let then $g(x)=f(x+r)-r$ : it's easy to check that $g(x)$ is such that $g(g(x))=ug(x)+vx$ and $g(0)=0$
So WLOG consider from now that $f(0)=0$ and so $f(x)\ne 0$ $\forall x\ne 0$
Since $f(x)$ is decreasing, $f^{n}(x)$ is increasing for even $n$ and decreasing for odd $n$
And since $f^{n}(0)=0$, we can conclude
$\forall x\ne 0$ : $\frac{f^{n}(x)}x$ is nonzero and has same sign as $(-1)^n$
But $\frac{f^{n}(x)}x$ $=\frac{f(x)-r_2x-(f(x)-x)r_2^n}{(1-r_2)x}$
Since $r_2\ne \pm 1$, this quantity has limit $\frac{f(x)-r_2x}{(1-r_2)x}$ when $n$ is set to $+\infty$ if $|r_2|<1$ or $-\infty$ if $|r_2|>1$
And so $f(x)=r_2x$, else this quantity can no longer has same sign as $(-1)^n$ when $n$ is set to the appropriate $\infty$
So $f(x)=-vx$ $\forall x$, which indeed is a solution
And so the solutions in this subcase :
$f(x)=x$ $\forall x$
$f(x)=c-vx$ $\forall x$
\begin{bolded}Subcase 7.2\end{bolded} : $v<0$ and $u^2+4v>0$
\begin{bolded}[color=red]This case need to be developped a bit more[\/color].\end{bolded}
We again obviously have the two solutions $f(x)=r_1x$ and $f(x)=r_2x$, both $r_1,r_2$ having the same sign
But there are in some cases a lot of other solutions.
Look for example at $f(f(x))=5f(x)-6x$ : it's possible to buid piece per piece infinitely many solutions such that for example $f(x)\in(2x,3x)$ $\forall x>0$
\begin{bolded}Subcase 7.3 \end{bolded}: $v<0$ and $u^2+4v=0$
\begin{bolded}Subcase 7.3.1\end{bolded} : $u\ne 2$
let $x\in\mathbb R$ and the sequence $a_n$ defined as :