forked from kserve/kserve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathframework_pytorch_test.go
135 lines (120 loc) · 3.46 KB
/
framework_pytorch_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/*
Copyright 2020 kubeflow.org.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package v1alpha2
import (
"fmt"
"testing"
"github.com/kubeflow/kfserving/pkg/constants"
"github.com/onsi/gomega"
"github.com/onsi/gomega/types"
v1 "k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/api/resource"
)
func TestFrameworkPytorch(t *testing.T) {
g := gomega.NewGomegaWithT(t)
scenarios := map[string]struct {
spec PyTorchSpec
matcher types.GomegaMatcher
}{
"AcceptGoodRuntimeVersion": {
spec: PyTorchSpec{
RuntimeVersion: DefaultPyTorchRuntimeVersion,
},
matcher: gomega.Succeed(),
},
"RejectGPUResourcesExcluded": {
spec: PyTorchSpec{
RuntimeVersion: DefaultPyTorchRuntimeVersionGPU,
},
matcher: gomega.MatchError(fmt.Sprintf(InvalidPyTorchRuntimeExcludesGPU)),
},
"RejectGPUResourcesIncluded": {
spec: PyTorchSpec{
RuntimeVersion: DefaultPyTorchRuntimeVersion,
Resources: v1.ResourceRequirements{
Limits: v1.ResourceList{constants.NvidiaGPUResourceType: resource.MustParse("1")},
},
},
matcher: gomega.MatchError(fmt.Sprintf(InvalidPyTorchRuntimeIncludesGPU)),
},
}
config := &InferenceServicesConfig{
Predictors: &PredictorsConfig{
PyTorch: PredictorConfig{
ContainerImage: "kfserving/pytorchserver",
DefaultImageVersion: "0.1.0",
},
},
}
for name, scenario := range scenarios {
g.Expect(scenario.spec.Validate(config)).Should(scenario.matcher, fmt.Sprintf("Testing %s", name))
}
}
func TestCreatePytorchModelServingContainer(t *testing.T) {
var requestedResource = v1.ResourceRequirements{
Limits: v1.ResourceList{
"cpu": resource.Quantity{
Format: "100",
},
},
Requests: v1.ResourceList{
"cpu": resource.Quantity{
Format: "90",
},
},
}
var config = InferenceServicesConfig{
Predictors: &PredictorsConfig{
PyTorch: PredictorConfig{
ContainerImage: "someOtherImage",
DefaultImageVersion: "0.1.0",
},
},
}
var spec = PyTorchSpec{
StorageURI: "gs://someUri",
ModelClassName: "Net",
Resources: requestedResource,
RuntimeVersion: "0.1.0",
}
g := gomega.NewGomegaWithT(t)
expectedContainer := &v1.Container{
Image: "someOtherImage:0.1.0",
Name: constants.InferenceServiceContainerName,
Resources: requestedResource,
Args: []string{
"--model_name=someName",
"--model_class_name=Net",
"--model_dir=/mnt/models",
"--http_port=8080",
},
}
// Test Create with config
container := spec.GetContainer("someName", 0, &config)
g.Expect(container).To(gomega.Equal(expectedContainer))
// Test Parallelism
expectedParallelism := &v1.Container{
Image: "someOtherImage:0.1.0",
Name: constants.InferenceServiceContainerName,
Resources: requestedResource,
Args: []string{
"--model_name=someName",
"--model_class_name=Net",
"--model_dir=/mnt/models",
"--http_port=8080",
"--workers=1",
},
}
containerWithPar := spec.GetContainer("someName", 1, &config)
g.Expect(containerWithPar).To(gomega.Equal(expectedParallelism))
}